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PREFACE

These Proceedings have been organized with papers given in the order in
which they were presented in the Colloquium. Those papers representing
contributions to the evening film sessions have been placed following the
full length papers because of the somewhat different format involved. In
several of these shorter papers are to be found some of the most stimulat-
ing presentations of the Colloquium, and the organizers are indeed grateful
that the authors of these film discussions have been willing to participate
by contributing what have in many cases been examples from unfinished and
ongoing research.

The presentations of the Introductory Session have not been included in
these Proceedings. In this Session, chaired by Dr. R. J. Mackin, Jr.,

Dr. W. H. Pickering greeted the participants, Dr. F. E. Goddard explained
the Research and Advanced Developments Program at JPL, and Dr. M. M. Saffremn
gave the Introduction to the Colloquium.

The Editors
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INTRODUCTION

Interest in the science of liquid drops and bubbles extends beyond those
who work in fundamental fluid dynamics. Workers in meteorology, chemical
engineering, mechanical engineering, and space processing have an evident
and very practical concern with this science. Workers in nuclear physics
and in astrophysics use liquid drops and bubbles as models for phenomena
in atomic nuclei, and in self-gravitating astronomical systems.

This Colloquium provided an opportunity for workers in these various dis-
ciplines to come together, for the first time, to
- assess the present status of the science of liquid drops and
bubbles in liquids
- forecast and help determine the future directions of this
science ‘
~ determine the value to this science of forthcoming opportunities
to perform experiments in a weightless environment.

One aim of the Colloquium was to make evident that what might appear at
first sight to be a narrow and proscribed scilence with its best days behind
it, was none of these things. A reader of these Proceedings can judge for

. himself how successfully this aim was met. An excellent technical summary

of the Colloquium is provided by Dr. Scriven's paper on page xii.

A second aim was to help establish the future direction of the science of
drops and bubbles by looking toward the proper balance of future work in
theory, computation, laboratory experiment, and experiments in weightless-
ness. In retrospect this was too ambitious an aim to be met definitively
by a single Colloquium; such a balance will probably emerge only after more
conventions of this Colloquium’ have taken place.

Even 8o, the presentations do allow some general conclusions to be drawn.
Almost without exception, theory is treated in linear approximation and
applies to the equilibrium, or at best stationary state. While computation
does indeed treat the non-linear dynamics of drops and bubbles it does so

only when a high degree of symmetry significantly reduces the computational
complexity. In laboratory experiments the fact that there are usually several
complicated effects that are taking place simultaneously makes precise analysis
difficult. Experiments in weightlessness are relatively new. However the
several papers presented on the Skylab demonstrations hint at the potential
for remarkable experiments that may allow effects simultaneously present in
earth-based experiments to be disentangled.

Here I must confess to the personal prejudice that as this potential is slowly
realized in the next few years, when what were demonstrations become carefully
controlled experiments, more and more experimenters will be drawn to experi-
ments in weightlessness, and what is learned will greatly stimulate both
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theory and computation and even result in new experiments on earth. Pre-
sently, NASA KC 135 aircraft flying along a ballistic trajectory afford up
to 25 seconds of weightlessness. Soon to be flown as part of the NASA Space
Processing Program, sounding rockets will allow experiments times in weight-
lessness up to 10 minutes. Eventually, in 1980, the NASA Space Shuttle will
provide 7 days of weightlessness, and in fact JPL is engaged in a project to
result in an experiment module being made available on the Shuttle for drop
dynamics experiments. It 1is expected that future conventions of this Col-
loquium will be under the auspices of this project which is itself part of
the NASA Physics and Chemistry in Space Experiments Program.

Interdisciplinary meetings such as this one are notoriously high risk events.
When successful, as this Colloquium was, the presentations stimulate special-
ist and non-specialist alike, provoking exciting discussions at sessions

that spill over into corridors, and irrepressibly into the coffee and meal-
time breaks. Hopefully the presentations as recorded in these Proceedings
will be just as exciting to read as they were to hear.

Dr. Melvin M. Saffren
Chairman, Steering Committee
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THE MOTION OF BUBBLES AND DROPS IN LIQUIDS

J. F. Harper
Department of Mathematics, Victoria University of Wellington, New Zealand

INTRODUCTION

The purpose for which I was honoured with an invitation to this
Colloquium was that of pointing out some difficulties which have not been
resolved, especially those which seem to provide opportunities for future
useful work. It was not primarily that of reviewing well-known theories
and the experiments which they explain. For a bubble or drop moving through
a 1liquid under steady external forces, that has been done first by Levich (1),
on whose work almost all later theory is based, and more recently in Refs. 2,
3, 4. Some defects have come to light in Ref. 2, which could usefully be
mentioned here. Too little attention was paid to numerical work (5,6), to
recent studies of raindrops (7,8) and to the stagnant-cap theory (see below),
and there are some errors in the thermodynamic treatment of adsorption:
temperature changes must be neglected in order to obtain equations (4.4) and
(4.5) of Ref, 2, and the physical interpretation of T on the following page
is too simple. A list of minor misprints will be provided on request.

INSTABILITY

The first difficulty and opportunity which I wish to mention is this.
For many years now experimenters have disagreed on the criteria for stability
of the steady rise of a gas bubble in a pure liquid. Let us define

M = gn“/pad , (1)

where g 1s the acceleration due to gravity, n 1is the dynamic viscosity
of the liquid, p 1its density and o its surface tension. Then some
experimenters (9,10) find that bubbles of any size will rise stably in any
1iquid with M > 108 , while others (3) have observed instability at M > 10~2
in circumstances quite similar to those of Ref. 10.

If M < 10-8, it appears that marginal instability occurs when the Weber
number

W= oU2d/c % 3, (2)

where U 1s the velocity and d 1s the equivalent spherical diameter of

the bubble. The reason is well known: small changes in d then give rise

to very large changes of shape and hence U, (2,11,12), and so steady-state
theory predicts that quite different shapes and hence flows can almost co-
exist for the same bubble. But what is not well understood is the type of
motion which occurs when steady flow does become unstable (9,13). Experimental
bubbles rise in either helices or plane zigzags, and there seems to be no way
to tell which will occur in any given case. If anything, the present theoret-
ical confusion is worse. Spiralling has been shown to persist if the motion
is suitably started (13), but only if the bubble is also subject to the other
instability as well, and the type of motion predicted for that case is not
zigzagging but monotonic wandering away from a vertical path. It is
unsatisfactory to have been left for seventeen years wondering, but not
knowing, whether surface-active impurities are some way responsible (20),
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THE WATER ANOMALY

Another phenomenon where the same suspicion arises might be called the
"water anomaly". Provided that W < 0.5, bubbles are very nearly spherical,
and their graphs of drag coefficient against Reynolds number follow the
familiar universal curve for solid spheres if their surfaces are dirty, and
a somewhat lower universal curve (14) if clean. But even the most carefully
distilled water appears to behave in the same way as filtered (but undistilled)
water, by following the solid-sphere curve if R = Ud/v < 100, where v 1is the
kinematic viscosity, and then gradually approaching the clean-surface one
until R = 500, by which time distortion from a spherical shape has become
important. If that is a real effect, (and I am indebted to Dr D W Moore :
for pointing out to me how strong the evidence in Ref. 14 is), it must mean .
that all so-called "clean" water has the same non-zero amount of the same
surface-active impurity dissolved in it. The mystery is apparently deepened
by the fact that a 13% alcohol solution in water behaves like a normal pure
liquid (14).

The only obvious suggestion to make is that at least one of the natural
chemical components in water exposed to the air is surface-active enough and
abundant enough to act as the "impurity". Because a free water surface is
always charged, and the electrical conductivity of water is notoriously
about 10 times as high in the presence of ordinary air as when the carbon
dioxide is carefully removed, we are led to consider water as a roughly 10~6
molar solution of H_Ot and HCO_-. The diffuse (Gouy-Chapman) double layer
at the surface is then about 300 nm thick (15), and we can estimate the
effect on the surface tension in order-of-magnitude terms as follows. Suppose
that we take the potential difference across the double layer to be 0.1V,
and then the enmergy in a capacitor with plates 300 nm apart and a water
dielectric is about 10~ J w2, which corresponds to a surface-tension differ-
ence of 10~2 mN m~! between H,0 and the ionic solution.

That does not seem to be enough of a surface pressure to interfere with
a bubble 1 mm in diameter rising at 0.2 m s™! , but there is a magnifying !
mechanism for it. A rising bubble with a free surface is so efficient at
sweeping any small amount of adsorbed impurity round to its rear stagnation
point (16) that whenever the motion is visibly retarded, the surface must be ;
totally clogged around that point, though it might well be effectively free §
and unpolluted over the forward part of the bubble. This is, of course, the i
"stagnant-cap" hypothesis (17). Now convective diffusion onto a freely
moving surface is very much more efficient than off a surface at rest, and so
the surfactant concentration at the rear stagnation point of a rising bubble
will be many times its value at a stationary fluid surface in equilibrium. H
Detailed calculations are so far available only for a very small stagnant cap
on a bubble rising at low Reynolds number (18), but magnification factors of
10 or 20 for the surface pressure seem entirely reasonable. That would explain
how Davis and Acrivos (17) found it a good approximation to use in their
theory the maximum possible surface pressure of which a given surfactant was
capable, even if the bubble was rising in quite a dilute solution, and it
would also bring up the electrical surface pressure for water to 0.l or
0.2 mN m~! at a rear stagnation point. Our only guide to the effect on a
bubble is Moore's theorem (16) for the drag coefficient, i.e.

R e L IR

1
=2 {i-5 Ll mwa} 3

where p 1s the cosine of the polar angle 6 measured from the front j
stagnation point. This theorem holds when the flow is slightly perturbed
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from irrotational, which is not accurately true here, but it seems that the
surface pressure could perhaps suffice to explain the observed effects.

Obviously there is plenty of scope here for future work, both experimental
on bubbles rising in water with the carbon dioxide removed (and with the
conductivity simultaneously measured to check on it), and theoretical for a
stagnant cap on a sphere at high Reynolds numbers, somewhat resembling Leal's
(19) calculation for an analogous two-dimensional flow. The numerical work
will not be easy: there are more independent dimensionless parameters than
one would like, and even small Reynolds numbers gave some trouble (17).

LOW PECLET-NUMBER FLOW

Let us turn to a problem where the theoretical difficulties are quite
minor. If a bubble or drop moves in an ideal surfactant solution at low
Péclet number P = Ud/D (and therefore low Reynolds number because v >> D
for all ordinary surfactants in all ordinary liquids), the motion and the
distribution of surfactant are remarkably easy to find (2), even when diff-
usion through both bylk phases and along the surface is allowed for simult-
aneously., It would therefore seem to be a good system in which to try
working out the effects of more complicated physical chemistry (such as
the surfactant approaching the critical micelle concentration, or undergoing
chemical reactions, possibly slowly enough to hold up its diffusive transfer),
but for two objections. Low Péclet numbers are unusual in bubbles big enough
to be visible with the naked eye, and even if there were some good means of
observing tiny bubbles rising, the liquid would have to be extraordinarily
pure for them to act as anything but small rigid spheres. The second
difficulty is a challenge to a surface chemist, but the first could only be
overcome in space. That is because U on earth is always between gd?/18v
and gd?/12v (the Stokes and Hadamard-Rybczynski values), and so

gd3/18vD < P < gd3/12vD (%)

To get d up to 0.1 mm would require g to be reduced to a thousandth of
the usual 9.8 m s=2 , and obviously greater reductions would allow for larger
bubbles.

One reason why this Colloquium was called was "to determine the value
to this sclence of forthcoming opportunities to perform experiments in a
weightless environment", There seems to be no point in suggesting that any
experiment be done in space if it is feasible on earth, but we seem to have
here an experiment which is impossible on earth and which might tell us some-
thing important about surface chemistry in very dilute solutions., I shall
be interested to learn whether the "rise" of small bubbles in a very highly
purified liquid constitutes an experiment feasible in space.
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THE PENDANT DROP: THEORY AND EXPERIMENT
by A. A, Kovitz

Department of Mechanical Engineering and Astronautical Sciences
Northwestern University, Evanston, Illinois 60201

ABSTRACT

The spectrum of static, axisymmetric pendant drop shapes is studied, both
experimentally and theoretically. Calculations, both numerical and analytical,
based on the Young-Laplace equation, yield possible pendant drop shapes as a
one-parameter (a non-dimensionalized pressure jump at the drop apex) family
of curves. These results are interpreted in terms of varying contact circle
radius and hydrostatic pressure in the contact circle cross-section, for any
fixed value of interfacial tension and density difference across the inter-
face. Experiments were conducted in which the above noted parameters were
varied, and their relationship to the calculations evaluated.

The calculated family of solution curves is bounded by two envelopes; one
gives the high pressure limit for existence of static drops; the other gives
the low pressure limit. For given interfacial properties, and fixed contact
‘circle radius, multiple solutions exist between these two pressure extremes.

Experiment shows that two pendant drops are observable for a given con-
tact circle radius and pressure; one is statically stable; the other is
statically metastable. With increasing pressure these two shapes approach:
each other; at a certain maximum pressure they coalesce into one pendant drop
shape; any higher pressure results in dripping. It was also verified that
drops suddenly break off when the low pressure limit is approached.

Static stability conclusions have recently been reported by a number of
authors using energy methods; the direct experimental verification herein
reported (except for some unpublished results to be noted), and the ana-
lytical results for high and low pressure drops appear to be new.

INTRODUCTION

A pendant drop is formed when the denser of two contiguous fluids is
suspended below a closed, common curve of contact between the fluids and a
fixed solid; implicit in this description is the supposition that the con-
figuration is in static equilibrium under the influence of gravitatiomal and
surface tension forces. The axisymmetric case, which arises when the con-
tact curve is a circle whose plane is perpendicular to the gravitational
force, has received much attention both by early and recent investigators.
The early work focused mainly on determination of the pendant drop shape,
through solution of the governing Young-Laplace equation, and its use in
measurement of surface tension. The most recent work is concerned with the
static stability of pendant drops, primarily through application of varia-
tional techniques on the energy of the system.

This paper is also concerned with the static stability of pendant drops.
Conclusions will be deduced from the family of drop shapes determined
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numerically and analytically from the Young-Laplace equation rather than an
energy approach. Certain results, for essentially low and high pressure in
the contact circle cross-section, will be obtained analytically. Finally,
these static stability conclusions will be shown to compare well with
experiment.

Although the stability limits to be cited here have also been recognized
in recent work using energy methods, they appear in a more compact and con-
cise way through the interpretation of boundary envelopes to the pendant drop
solution curves. Experiments focused on verifying these static stability
limits, and the observation of certain multiple solutions, do not appear to
be in the literature. However, many experiments on the breakaway volumes of
pendant drops are reported, with the object of obtaining empirical equations
useful in the drop-weight method for surface tension; Padday and Pitt (in a
1973 paper referred to later) give many references for these experiments,

No paper on pendant drops can fail to note the fundamental work of Young
(1) and Laplace (2). These researchers established the general governing
equation for interfacial surfaces and obtained solutions for limiting cases.
Laplace (2), in particular, already recognized the ability of the interfacial
equation to yield imformation on static stability.

The first comprehensive, and still useful, numerical treatment of the
Young-Laplace equation is due to Bashforth and Adams (3). They published
tables for drop shapes as a function of a '"shape parameter', which is related
to the apex pressure parameter to be used here. Lohnstein (4) obtained ap-
proximate results for the limiting volume of drops as a function of contact
circle radius. These results were used in conjunction with a method for
finding more accurate values of surface tension. Bakker (5) has summarized
results up to 1928 for numerical computation of drop shapes and their prac-
tical application, More recently, Padday (6) and Princen (7) have given
extensive and excellent reviews of the experimental and mathematical state
of the art, up to 1968, for determination of interfacial shapes and surface
tension.

Much current work on pendant drops concerns their static stability.
Padday and Pitt (8) present a comprehensive study of the static stability of
three types of axisymmetric interfaces, including pendant drops. Their re-
sults are based on an application of the energy method, using the extensive
numerical results of Padday (9) to evaluate the first and second variations
of the energy integral. Padday and Pitt (8) also note the appearance of
bounding envelopes, and interpret them with respect to static stability.
Their paper carefully classifies many types of stability phenomena, with
detailed descriptions of meniscal behavior under a variety of constraints.
Pitts (10) avoids the numerical approach of Ref. (8); in this way he is able
to include more general perturbations in pendant drop shape; it is not clear
that his stability boundaries differ from those of Padday and Pitt (8).

Related theoretical studies by Gillette and Dyson (11,12,13) consider
the stability of liquid bridges, and disjoint capillary system, based on
variational principles. Orr, Scriven, and Rivas (14) report on new results
for liquid bridges (or pendular rings).
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FORMULATION OF PROBLEM

Figure 1 is a schematic of the pendant drop with dimensional coordinate
system. The basic Young-Laplace equation (see, for example, Refs, 6,7) re-
lating the pressure difference across an interface to the interfacial curva-
ture and interfacial tension is

&p = p, -p_= o(l/R +1/R)) , (1)

where P, and p_ are the local hydro-
static pressures on either side of the
interface, R, and R, are the local
principal radii of curvature of the
interface, and o is the interfacial
tension. Let p., and p,_ be the
pressures in the plane of the contact
circle, inside and outside the drop,
respectively; if and p_ are the
corresponding flugg densities (with
p+ > p_), and g the gravitational
force per unit mass in the negative

f direction, then ‘

&p = P, -P._ + pef -p8f , 2

where p = p, - p_, f_1is the dis-
tance from the apex 8¢ the drop to its
contact circle, and £ is the distance
from the apex to the plane where Ap is
measured. Introduce the meniscus con-
stant (a length)

Fig. 1. Schematic of pendant drop
showing dimensional coordi-
nate system.

k =.Jolpg
and the non-dimensional lengths
xmr/k , y=£/k 3)
these are identical to the variables used, among others, by Huh and Scriven

(15), and Kovitz (16). It is convenient to introduce the non-dimensional
pressure difference across the interface

-w B pp/pgk =G -y , (4)
where

G=(p., -p, *+ p8f)/psk 5)

is the non-dimensionalized pressure difference across the interface at the
drop apex. It may be verified that

G = 2k/b = 2/gY/2% |



307

where b is the single radius of curvature at the drop apex, and 8 is the :
Bashforth and Adams "shape factor'" used by many authors; see, for example,
Refs. (3,6,7,8,9). Only positive values of G will be considered in this
study; it will be seen (on Fig., 2) that this restricts the discussion to
drops with apex below the contact circle plane.

The non-dimensionalized pressure difference at the contact circle cross-
section is

W, =6 - £ /k=(p, -p. )/ pgk . (6)

In Ref. 8 the "hydrostatic pressure at the tip" is denoted by pgZ, = Pey - P
since pressure varies linearly with vertical distance, Z /k is used theére
instead of y, as the dependent variable,

c-

If Ry and Ry are written in terms of x, y = G + w, and ¢ (see Fig. 1) for
the axisymmetric case,Eq. (1) becomes a pair of first-order ordinary differ-
ential equations for w(yp) and x(p);

w' = -sing/(w+sing/x) ,
0))
x' = -cosg/(w+ sing/x) ,
with boundary conditions
w0) = -G , x(0) =0 .

Development of Eqs. (7) is outlined in Refs. (15,16) with additional dis-
cussions in Refs. (2,6,7,10).

Equations (7) may be expressed as a single second-order ordinary differ-

ential equation for w(x);
L} 12 V I
-w (1+w )/ x , (8) }

where T is to be used when w' Q 0, respectively.

2 3/2
w' = F w(1+w' )

INTERPRETATION OF NUMERICAL SOLUTIONS

A standard Runge-Kutta finite difference technique was found adequate to
solve the system, Eqs. (7). Further discussion on integration of the Young- :
Laplace equation may be found in the appendix to Ref.” 10. The initial values '
w(cpl), x(qgl), for 0 « 9 << 1, were obtained by series solution of Eqs. (7):

W) = -6 + G ;pl + 0<<p1) ©

o = ey + o)

With © and G chosen, the numerical procedure yielded w(p:G), x(p:G); with
b the numerical results matched Eqs. (9) to five significant figures
over a substantial range of ¢ > ¢;. This insured that the solution was
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independent of @, as long as G 2 .25. Solutions for small and large G will
be discussed in a later sectiom,

Results of the numerical solutions of Eqs. (7) are shown in Fig. 2.
Each curve, w(x;G), starts at w(0;G) = -G; shown in the figure are curves for
integer values of 1 <G < 7, as-well-as G = 3,5, 2.5, 1.5, .50, .25, and a
segment of G = 2,75, The most striking feature of these integral curves is
the appearance of envelopes which bound their undulating portions. Padday
and Pitt (8) also notice one of these envelopes (see their Fig. 14), corre-
sponding to A4B,CE; on Fig. 2. Comparison with their Fig. 14 shows sensible
agreement with Fig. 2, with the possible exception of the neighborhood of El;
it will be seen that the location of the envelope terminus E; in Fig. 2 is
determined by an analytical solution of Egqs. (7) for small values of G,
whereas Padday and Pitt (8) used a 'fairing in' technique to obtain their
envelope. Although Padday and Pitt (8) comment on the physical consequences
(to be discussed below) implied by the envelope AsB,C.E, in Fig. 2, they do
not explicitly recognize its existence in the x,w-plane,

The reader is directed to Ref. 8 for an alternate and detailed descrip-
tion of the static stability phenomena to be described below. Padday and
Pitt (8) identify pendant drops with tip coordinates on the A1B,C,E; envelope
as exhibiting ''pressure-radius limited stability'; those with tip coordinates
on the A,B,C,E, envelope demonstrate "volume-radius limited stability".
Pressure-radius limited drops become unstable with volume perturbation (for
fixed tip pressure) at their stability limit; volume-radius limited drops
become unstable with pressure perturbation (for fixed volume) at their
stability limit. Most of the conclusions enunciated in Ref., 8 are in agree-
ment with those to be discussed herein. However, there is a difference
associated with the AZBZCZEZ envelope which will be noted when it is en-
countered.

The physical implications of Fig. 2 may be understood as follows: for
a given value of the meniscus constant k = ,/o/pg, and a given contact circle
radius "a', the abscissa .

xBx = a/k (10)

is determined; for a given pressure difference, Pet =~ Poos in the contact
circle cross-section

wew = --(pc+ -pc_)/pgk ‘ L

is determined from Eq. (6). This specifies a point x,, w_ on Fig. 2 through
which may pass curves G = constant > 0; each of these curves (each with a
different value of G), starting at w(0;G) = -G, and terminating at x,, LA
representg a static pendant drop configuration such that

y(x) = G + w(x) . (12)

It remains to discuss which of these curves represent stable drops (i.e.,
physically observable ones), and to note that for a given x, there are values
of w, such that no values of G exist, or at most only one. Consider, for
example, x, = .34, W, = -3.86; the two smallest values of G for this point
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are G = 4,00, 4,65, The drops corresponding to these specifications are shown
on Fig. 2 as second from the left along the upper row of individually drawm
pendant drops. Typically, the drop with the smallest G value (G = 4,0 in this
case) does not touch the A¢B,C E envelope, while that with the next larger G
value (G = 4,65 in this case} }s tangent to this ''outer" envelope,

With x, = .34 the upper row of pendant drop shapes in Fig. 2 reflect the
range of LA values for which at least two values of G exist; at w_, = -5,70,
X, = .34 intersects the outer emvelope; at this point only one vaiue, G » 6 0,
exists; for |w,| > 5.70 no solutions exist. At the other extreme, x, = .34
intersects the AZB CoE (inner) envelope at wy = -1,45 with G = 1,15, 3.30;
for 0 < |w < 1.4 %y one solution exists.

The second row of drop shapes in Fig. 2 illustrates, for x, = 1.18, the
same features of the solution. In this case the inner envelope limit occurs
for wh .10 > 0, corresponding to Pet+ = Po- < 0, for which only one drop
(G = 3.0) exists.

The physical implications of the above discussion for a given X, (tip
radius) are:

(a) at least two pendant drop shapes exist for each value of -w, (tip
pressure) within a certain range of permissible values; experiment
will verify that the drop corresponding to the smallest value of G
(smallest pressure difference at the drop apex), for each permissi-
ble value of wy, 1s stable (will occur naturally); experiment will
also verify that its 'conjugate' drop (that for the next largest
value of G, but the same Xg» w,) is metastable (can be observed
experimentally, but under any perturbation it either contracts to
the stable drop or elongates continuously until sudden break-off
occurs) ;

(b) if -w, is greater than a critical value determined by intersection
with the outer envelope no stable drop exists (dripping occurs);

(¢) 1f -w, is less than another critical value determined by inter-
section with the inner envelope, the metastable drop does not
exist; experiment will verify that this prediction corresponds to
the sudden break-off of a quasistatically elongating (metastable)
drop, with no constraints on volume or contact angle, whose
sequence of shapes (for a given x a) 1s closely approximated by the
two rows of drops (solid curves) shown in Fig. 2.

It may be shown that, in general, a finite number (greater than 2) of G
values exist for a given X5 for each w, within the permissible range deline-
ated by the envelopes. However, all drop profiles for G greater than the two
smallest values touch both envelopes before reaching x,, LA These drops
were never observable with the apparatus and experimental procedure to be sub-
sequently described.

Finally, it should be noticed that

(a) stable drops exist for tip radii E1 <x, < E2 only if the tip
pressure -w_ < 0;
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(b) no stable drops exist for x > E,; this upper bound does not appear
to be recognized in Ref., 8; therefore the "bath tap profile'" shown
there as Fig., 9 is questionable to this writer.

Both E1 and E2 are determined analytically in a later section.

ASYMPTOTIC SOLUTIONS FOR _LARGE AND SMALL G

For large G (meaning large interfacial pressure differences at the drop
apex) the apex curvature is large; this causes the linear pressure variation
over the drop interior due to gravity to be small compared to the mean

“pressure within the drop; see Fig. 2. Thus gravity effects are small com-

pared to the influence of interfacial tension; the drop shape is closely
approximated by a spherical segment. .

If G is small (meaning small interfacial pressure differences at the
drop apex) the apex curvature is small; in this case the slope of the inter-
facial surface is everywhere small so that the drop shape is closely approxi-
mated by a linearized version of Eqs. (7).

Details of the solution to Eqs. (7) for large and small G will be given
elsewhere. Both solutions are attainable as series expansions in terms of
negative and positive powers of G for large and small G, respectively.

These developments are in the spirit of the analysis given by Concus (17)
for menisci internal to circular cylinders, and the solutions for rod-in-
free-surface menisci in Ref. (16).

For large G:

w(giG) = -G + G-lwl(cp) + c‘3w3(q,) +06) (13)
x(@:6) = 6 Ix (o) + G 3k () + 0™ ; (14)
, T 1'? 3°¢ ;
where ’

x,(g) = 2 sing , (15)
x3(¢) = 4[sin2¢ + 2(cos3qr1)/3]/sin¢ ; (16)
v, () = 2(1-cosg) , an
wa(qo = (8/3)[1/2-3cos¢/2 + cos3¢-zn[(1 + cosg)/2}} . (18)

For small G:

wi(x;G) = -GJo(x)

&) { [3,00 +x713,0 7 160 - X 0 +xT W0 | L, + 0@, a9)
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where J, (x), Yi(x) are Bessel functions of the first and second kind,
respectively, and

oX 3
Ll(x) [ Jo zYl(z)Jl(z)dz ,

x
Lz(x) = Eo zJi(z)dz .

The solution for large G exhibits the expected near spherical shape since

w® -G+ 26" (1-cosq) ,* x= 2c'1s1n.9 R

are parametric equations for a circle of radius ZG-1 with center at (x = 0,

w= -G + 2G""). However, the representation given by Eqs. (13-18) does not
admit an inflection point; therefore, it can describe the drop shape in the
neighborhood of the outer envelope (A;B;C; in Fig. 2), but cannot be used to
give the drop shape in the neighborhood of the inner envelope (AZB2 in Fig. 2).

The small G solution has as its leading term the solution to a linear-
ized form of Eq. (8), namely,

wix) = -GJo(x) .

This solution was obtained by Rayleigh (18) for the case of nearly flat
interfaces.

ENVELOPES OF SOLUTIONS

The large and small G pendant drop solutions, given in the previous
section, may be used to obtain envelope curves. Analysis proceeds in the
same way as in Ref. 16. The basic point is that an envelope curve is tan-
gent to all members of the single parameter family of curves; there may be
more than one envelope, which is the present case.

For large G, Eqs. (13-18) may be shown to require

@) = % (@D /X (@ - ¥ (@ - XD/ (D (20)

on the envelope. Eq. (20), together with Eqs. (13-18) yield the envelope
curve. This curve is shown as the dotted contour AyB,C; on Fig., 2. Within
the scale of Fig. 2 one sees that the agreement with a possible 'faired-in"
envelope is excellent up to the neighborhood of point Cl'

For sufficiently large G, ¢ on the envelope approaches /2. There an
approximate solution for the outer envelope may be written as

wix) ~ «2/x , (21)

in the large G limit, This approximation can be used with no more than 5%
error for G = 8.0; with G =2 15.0 the error is within 0.1%.
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The envelope for small G is obtained from Eq. (19). Define a function

f(x,w,G) = Q + GJo(x) + G3F(x) R (22)

where F(x) is the coefficient of G3 in Eq. (19). On the envelope

3 (x,w,6) /36 = 0 . (23)
Eq. (23) yields
A = -3 ®/F@ (26)

on the envelope, for sufficiently small G; i.e., x must be such that G is
small. Eqs. (19) and (23) allow the determination of the envelope curve
w(x) for small G. ’

Numerical evaluation of Eq. (24) shows that in the neighborhood of the
first zero of Jo(x), ie., for x < x, = 2.4048 o--

Jo(x) 20 , F(x) <0 ;

therefore, real values of G exist for x £ x,. In the region X, £ X < Xy,
where x; = 5.5201 ... is the second zero of J,(x), J (x) = 0, and F(x) passes
through zero and becomes positive.: Therefore there 2s a second region in
the neighborhood of x < x; where real values of G again exist. These two
branches of Eq. (24) are plotted in Fig., 2 as the curves oE; and BE,
respectively. It may be verified that these envelope curves possess zero
slopes from the left and right at E; and E,, respectively. The numerical
curves for small G appear to agree very weil with the analytical envelope
segments cEq and BE;. 0oE; is the small G portion of the outer envelope
(A;B1Cy); PE, is the small G portion of the imner envelope (AZBZCZ).

These results indicate that for tip radii such that Ef < x5 < Ey no
stable pendant drops can exist for positive tip pressures. Furthermore, when
Xg > Ez stable drops cannot exist, even when the tip pressure is negative.
The x, < E; bound was recognized explicitly by Pitts (10).

Any successful analysis for the inner envelope when G is large requires
asymptotic drop solutions that admit inflection points, Only a limiting
solution has been obtained using a crude integral approximation to the solu-
tion of Eqs. (7) in which an integrand is expressed through assuming the shape
to be spherical., This yields for the x-coordinate of the inner envelope
(with ¢ ~ 7/2)

x ~ (16/3)67 | (25)
To this approximation the w-coordinate is simply w ~ ~G.

This tentative result for the inner envelope in the limit of infinite
G allows one to understand why pendant drops formed at very small tip radii
have relatively large drop radii as they 'drip off'". The drop radius is
approximated by the x-coordinate of the outer envelope, x ~ ~2/w ~ 2/G (from
Eq. (21)); the tip radius is given by the x-coordinate of the inner envelope,
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Eq. (25). Therefore, drop radius/tip radius ~ 3G2/8, or

drop radius ~ [(3k2/2)- (tip radius)]t/> (26)
as tip radius -~ 0, G - @, It would appear to be difficult to produce very
small pendant drops simply by dripping from the end of a small tip; this
is confirmed by experience.

EXPERIMENTAL PROCEDURE AND DATA REDUCTION

Experiments were conducted to test the validity of the theroetical con-
clusions. Pendant drops of a .l normal HCL-H,0 solution in air were pro-
duced, photographed, and their relevant properties measured. The acidic
aqueous solution (19) was used to minimize well-known surface aging effects
(20), which may result in time dependent values of surface tension for an
interval (order of minutes) after formation of a new surface. Direct
observation of the stationary appearance of a newly formed drop (at least
for the period of time necessary to take data) confirmed that surface aging
did not introduce appreciable errors.

A schematic of the experi-
mental apparatus is shown in Fig.
3; the caption relates the
identifying letters to the sys~
tem elements. All tubing is
filled with the common liquid
constituting the reservoirs and
pendant drop.

Steps in a typilcal data
taking event are as follows:

(a) with all stopcocks
closed except {5, the vertical
articulation is adjusted so that
surfaces b and g communicate at a
common level; the tip e (without
drop) is lowered to touch g; this
establishes the zero reading on
the dial indicator f at which e
(the contact circle location with Fig. 3. Schematic of experimental

known radius a) is at the same apparatus: (a) filling reser-
level as the "infinite reser- voir; (b) tip-pressure reser-
voir b; voir; (c) micro-syringe device;
(b) the stopcocks are (d) vertically articulated tip
adjusted so that reservoir b and/ holder; (e) interchangeable tip;

or the micro-syringe ¢ communi- (f) dial indicator; (g) ver-

cates, at the operator's dis- tically articulated tip-level

cretion, with the tip; reservoir; (h) flexible
constant-volume tubing; (k)
pendant drop; (21’2’3’4’5)
stop-cocks.




315

(c) the vertically articulated tip is moved relative to the reservoir
b, and the micro-syringe is manipulated to produce a desired pendant drop;

(d) once a pendant drop has been produced which is stationary upon
communicating e with b, the tip pressure AP = (p p._.)/pg is read
directly from the dial indicator (with .00l inch 31vis§ons),

(e) the stationary pendant drop is photographed.

To produce a drop at maximum AP, for a given tip radius a, requires the
gradual lowering of e until it is no longer possible to observe a stationary
drop when b communicates with e. Phenomena associated with drop development
and break-off will be described in the next section; at this point assume
that APmax can be determined.

Before any comparisons between theory and experiment can be attempted
it is necessary to know the meniscus constant k & ,/o/pg. This length may be
determined from knowledge of AP, and the contact circle radius, a. First,
recognize that the contact point fx ,w ) corresponding to maximum contact
circle pressure must lie on the A4B envelope in Fig. 2; second, observe
that the ratio w/x = (pressure di%ference across the interface at f)/(radial
distance of interface from axis of symmetry) must equal AP/a for w = w, and
X = x,. Thus, the locus of possible contact circle points in the x w-plane
for which AP and a are known must be on the straight line

w/x = —AP/a . 27

When AP = APp.., the intersection of the straight line w/x = ~AP ax /a with
the envelope A;B;C;E; gives the contact point for maximum pressure x,,w a1°
say. Once X, 1s so etermined,

k = a/xa . (28)

A test of the accuracy of the method is to compare the experimental
drop shape at AP .. with that given by the numerical results. This prescrip-
tion for finding R may be compared with that used in Ref. 16 for obtaining k
in the case of rod-in-free-surface menisci.

The minimum pressure contact point, for the same x,, should correspond
to the intersection of x = x, with the envelope A3B,CoE, of Fig, 2. This

would determine Xgs Woos S8Y, SO that

-pgkv . . (29)

APmin,e =

To produce a drop at minimum AP requires the gradual raising of tip e
until a static-elongated drop can no longer be produced by manipulation of
micro-syringe c and communication of e with b; in principal, this experi-
mentally determined minimum pressure, as read by the dial indicator, should
equal AP min,e as given by Eq. (29).

An alternate procedure for determining AP is to close stopcock 44
(with £, open, of course), and manipulate micro-s¥yringe ¢ to produce a
sequence of static drops of increasing length. At a certain maximum length
the drop suddenly breaks off. Since the system is static before break-off,
the pressure in the contact circle cross-section just prior to break-off
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should equal that predicted by Eq. (29). This may be tested by measuring
the length faZ of the drop just before break-off; then

Va2 = ook - (30)

With x, the same as that for AP, ., numerical procedures, or Fig. 2, may be
used to find the value of G = 62 such that

Va2 = W(%,36)) - w(05G,)
then

w(xa;Gz) = V.2 = Va2 + w(O;Gz) . 31

If W,9 = Wyo then the drop broke off at the theoretical minimum pressure;
in general, experiment has shown that Wi SV oo

For AP such that w,; < W, < W,9, for a fixed x = x,, there are two
observable pendant drops. The first with f, = f,., say, corresponding to
the smallest value of G at x,, w, is stable to small disturbances; it is
directly observable (with AP impressed upon the tip by communication between
b and e, Fig. 3). The second drop with f, = f_ , say, corresponds to the
next largest G value; it is metastable, and must be produced by successive
manipulation of ¢ and £3 (with £, and 4, open, and tip position fixed). The
observer notes that if £, < £_ ,"with £, closed, then f_ -~ fa after Ly 1s
opened; on-the-other-hani, ifa?a > fom ior L3 closed, tgen f, grows until
the drop breaks off, When f; = f, the drop length remains constant upon
opening £43. This behavior is readily observed after some practice; a photo-
graph of this stationary drop is obtained and used to compare its shape with
that predicted by the appropriate G curve in Fig. 2.

Drops corresponding to larger values of G than the above noted smallest
pair, for the same (xa,wa), were not observed,

EXPERIMENTAL RESULTS AND DROP BEHAVIOR

Photographs of pendant drop pairs, for a fixed x,, and w,; < W, < W,
are shown in Fig. 4. 1In that case the tip radius was ~ 1 mm, using distgiled
water in air., Passing from Fig. 4a to 4f corresponds to AP decreasing from
slightly less than OPpan to slightly greater than AP.y.; the darker profile
belongs to the stable 3¥op; the lighter profile to the metastable drop, as
described in the previous section. The shapes correspond very closely to
theory, with k = 2,64 mm (or ¢ = 68 dynes/cm), and X, = ,38; they may be
compared with the fi;st row of pendant drops, for x_ = .34, on Fig. 2, Pub-
lished values of g = 72 dynes/cm for water are considered correct under room
temperature conditions; never-the-less, this value of 68 dynes/cm should not
be disturbing because no special precautions were taken to insure surface

or handling cleanliness; these experiments required internal consistency,

not accuracy with respect to some external standard.

Production of maximum pressure drops requires some care. Even when tip
e is set such that AP < AP ,4 dripping can occur because, after break-off of
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the elongating drop the new interface may be such that it forms an unstable
drop which again grows and drips off, This dripping depends upon the pressure
loss through the stopcocks and tubing between reservoir b and tip e as the
emerging drop develops. The greater the pressure loss the less likely will
the new interface form a drop which is "longer" than the metastable drop; if
the new interface is "longer' than the metastable drop it will grow and drip;
if it is '"shorter" it will contract to the stable configuration and become
stationary. One can always adjust the stopcocks so that the contraction,
after break-off, is observed. As AP is increased (by moving tip e downward)
the contraction-after-break-off motion diminishes; for AP = AP ., contraction-
after-break-off is not observable; the drop remains stationary, with inter-
mittant dripping due to small disturbances or, possibly, surface aginmg
effects.

Fig. 4. Pendant drop pairs, showing the effect of decreasing pressure in the
contact circle plane on the shape of stable (dark profile) and
metastable (lighter profile)drops; distilled water in air. Contact
circle radius, 1.05 mm; x, = 0,38. Contact circle pressure in mm
of Hy0: (a) 13.0; (b) 12.4; (c) 11.2; (d) 7.0; (e) 5.0; (£f) 3.7.
The superposed grid spacing in (e) is 0.5 mm, Temperature ~ 80°F.

T ——— ey e T o e e
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These AP ... drops are shown in Fig. 5 as the dark profiles; Table I
summarizes the gata for these drops.

Table I. Experimental data on pendant drops (.1N, HCf-H,;, aqueous solution
in air at ~ 80°F), and results of data reduction using Fig. 2 and
appropriate numerical solutions. Values of tip radius a, AP ..
and a drop photograph (Fig. 5) are experimental; all other quan-
tities are inferred from the numerical results using these inputs.

—— ke t
EZOP a (mm) APmax X, v, G . c/pg A;Pm:i.n AI‘m:i.n,e
: (m Hzo) (mm) (mm H20) (mm H20)
1 1.05 10.9 430 <4,22 4,55 2.5
2 1.05 .43 -1.10 3.15 2.5 2.76 2.67
3 2.03 4.82 .82 -1.,91 2,70 2.5
4 2,03 .82 - ,57 2,70 2.5 1.41 .62
5 4.04 1.37 1.55 - .53 1.50 2.6
6 . 4,04 1.55 .20 2.25 2.6 - .51 -1.14
7 5.87 ~ 0, 2.26 ~ O, .85 2.6%
8 5.87 2,26 .50 1.90 2.6% -1.28 -1.71
9 7.46 2.87 .29 1.00 2.6%
10 7.46 2.87 .62 1.75 2.6% -2.38 -2.69
*  Assumed values of the meniscus constant
Fok

Experimentally inferred minimum tip pressure

T Theoretically predicted minimum tip pressure

Production of minimum pressure drops is relatively simple. The alter-
nate procedure described in the previous section was used to obtain the
photographs in Fig. 5 (the lighter profiles); again, the data for these drops
are shown in Table I.

In Fig. 2 the triangular symbols correspond to the contact circle
coordinates of the drops shown in Fig. 5. One sees that the AP . points
fall close to the A)B;CjE; envelope; however, the AP, points are all sub-
stantially below the A,BoC7E, envelope, except for the smallest drop at
x_ = ,43; i.e., AP in = APrin.e s given by Eq. (29). This seems reasonable
since the force baTance on smaller drops is dominated by surface tension
forces; for larger drops inertia effects become important. It is believed
that an experiment with better vibration control could result in closer

agreement with the low pressure limit.

Padday and Pitt (8) exhibit in their Fig. 33 some experimental and
theoretical results for critical and separating volumes of volume-radius
limited pendant drops; i.e., those drops whose static stability limits are
given by the present AjBoCzE; envelope. Unpublished photographs by R.
Picknett (1970) "of pendant drops just before rupture' are noted with
apparently excellent agreement of the experimental parameters of his critical
shapes with the theoretical results of Ref. 8.



319

* 3008 ~ @anjeiadwaj ‘W 7 S23BVOTPUT

ydeaBojoyd yowe uy jaew a7eds oyl °sueyd-m‘x syl uy sdoap asayl JOo UOFIBIOT STIATO IOBIUOD
ay3 moys g °*314 ur syoquis ae[ndueyi] °*S3TNSS1 TedFadunu a1qeojrdde o9yl aa18 (saxenbs pue
5270110) sjoquis ay] °sdoip asay) 103 wIep Y3 S9ZTILWUNS YITys I I[qEL 03 13J3x1 S208FANS 3Y3
03 jusocelpe siaqumy *o72IFD 30BIUOD uowuod e yjfm sdoap jo sainsodxs syqnop 1@ pasodiadns
5908]1ns OM3 YITM 9SOYL °ITB UF UOTINTOS OCH-I0H N 1°0 :sdoap juepuad oy3els Jo sydeaBojoyq

o

t*¢ *81a




320

CONCLUSIONS AND RESULTS

Assuming that the meniscus constant k is known, the following con-
clusions may be listed.

(a) Certain limiting conditions for the production of pendant drops
can be seen from the envelopes bounding solution curves for drop shapes.

(b) A "high-pressure" envelope gives the maximum pressure in the con-
tact circle cross-section, with prescribed radius, for existence of static
drops.

(c) There exists a "low-pressure" envelope which, for a prescribed
contact circle radius, gives the minimum pressure for static pendant drops.

(d) An intermediate range of contact circle pressures exist, for a
given tip radius, such that two observable pendant drops exist, one stable,
the other metastable.

(e) For a certain range of contact circle radii only negative contact
circle pressures will produce static pendant drops.

(f) There exists a maximum contact circle radius for existence of
static pendant drops.

(g) Experiments reported herein are in good agreement with the fore-
going remarks.

(h) Analytical solutions for the drop shape, in the form of series
representations, were obtained for low and high pressure in the contact
circle plane.

(i) These solutions allow the envelopes for high and low pressure to
be analytically determined; in particular, envelope properties in the
limits G~ =, and G - O are explicitly displayed.
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ON THE PRODUCTION OF BUBBLES BY POCUSED LASER LIGHT
W. Lauterborn and H. Bolle

Drittes Physikalisches Institut, Universitdt Gdttingen
D-34 GSttingen, Federal Republic of Germany

ABSTRACT

The bubbles produced in liquids when giant pulses of a ruby laser are focused
into it are studied by high speed photography with up to one million frames per
second using a rotating mirror camera. In most of the experiments the light
pulses are focused into distilled water by a single lens with low f/number to
get only one single spherical bubble or a very limited number of bubbles. Bubble
motion is evaluated from the frames with the aid of a digital computer using a
graphic input device. Smoothed radius-time curves of different portions of the
bubble wall are obtained by a sophisticated treatment of the data also allowing
a reliable calculation of bubble wall velocities (except at the very instant
of bubble collapse). Bubble production by laser light shows to be a very
flexible method to investigate bubble dynamics. It is applicable to a broad
variety of experimental configurations. An extensive study has been done so far
on bubble dynamics near boundaries and to a lesser extent on bubble interaction
and nonspherical bubbles. One of the numerical examples of the collapse of a
spherical bubble near a plane solid boundary obtained by Plesset and Chapman
(J. Fluid Mech. 47 (1971) 283) could be realized experimentally. Good agreement
is found. Moreover, bubble history can be followed far beyond the validity of
the theoretical model. Besides the well-known microjet formation towards the
wall two new jetlike phenomena are observed which both may be given the name
counterjet as these jets are directed away from the wall. Bubble interaction
and the collapse of nonspherical bubbles usually lead to jetting phenomena,
too. Almost symmetric bubble division into two parts with simultaneous jet
development in opposite directions has been observed on collapse of a bubble
being flattened by a bigger bubble in its vicinity. Presently the usefulness of
holographic lenses to produce many-bubble configurations is investigated.

INTRODUCTION

Bubble dynamics is a basic problem in cavitation research. Its experimental
investigation suffers from a lack of suitable bubble production methods. As a
new approach to this problem, the bubbles formed when focussing giant pulses of
a ruby laser into a liquid were studied. The advantages of this bubble produc-
tion method are:

1. The location and the instant of production are precisely known. Thus, high~-
speed photography, the most powerful experimental method to study bubble
dynamics, applies rather easily.

2. There are no disturbing objects - like electrodes when using underwater
sparks -~ influencing bubble motion.

3. Spherical bubbles can be obtained. Thus a comparison with existing theory
is possible.

The first results on bubble dynamics obtained by this new method look very
promising.
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APPARATUS

A schematic diagram of the most essential parts of the experimental setup is
shown in Fig. 1. Giant pulses emitted by a Q-switched ruby laser with a beam

FLASH LAMP
C::) GROUND GLASS

PLATE
LENS
Nda
RUBY LASER | ’ 1 BUBBLES
—1 LIQUID

[::fi::] ROTATING MIRROR
CAMERA
Fig. 1: Schematic diagram of the setup

cross section of about 1 cm, a duration of about 30 to 50 nsec and a total
energy of about 0.1 to 1 Joule are focused into the liquid under investigation
by a single lens with a focal length of 1.28 cm in air. The container used is a
cube with an edge length of 10 cm. The bubbles produced in the vicinity of the
focal point of the lens (in most cases submerged into the liquid) are diffusely
illuminated by a flash lamp through a ground glass plate and photographed by a
rotating mirror camera. Spherical bubbles then look black on a bright background
with a bright central spot where the light passes the bubble undeflected. For
the sake of clearness, the electronics needed for timing the different activi-
ties of the devices has been omitted in the diagram as well as some auxiliary
equipment like a He-Ne laser used for alignment of the optical components and
the photographic apparatus.

RESULTS

When a giant pulse of the ruby laser is focused into water, usually several
points of breakdown occur, each being the center of a rapidly expanding bubble.
The number of bubbles formed depends on the purity of the water, the light
intensity and the effective numerical aperture of the lens used. The number of
bubbles is decreased when the water is purified and increases with increasing
light intensity and focal length of the lens used. The dependence on the purity
of the water suggests that light absorbing impurities in the water act as nuclei
for the bubble forming process. In the present investigation doubly distilled
water with normal gas content (full access to the air, no degassing) is used
in most cases. The chance to get only one single spherical bubble is then rather
high. The dependence of the number of points of breakdown on the light intensity
and the focal length of the lens is quite clear, as with increasing light inten-
sity and focal length the liquid volume where the light inten51ty is sufficient
to start a breakdown at an impurity becomes larger.

It was observed that when the centers of breakdown are very close to each
other, the bubbles coalesce on growth and often form a spherical or almost
spherical bubble. With a lens of "long"” focal length (5 cm, say) and at a

7
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sufficiently high light intensity (and total energy) oblong bubbles may develop
from the string of points of breakdown either symmetric or unsymmetric with
respect to the focal plane, but with a high degree of symmetry about the opti-
cal axis. These observations can be said to be a direct experimental proof of
the stability of the spherical shape of a bubble during growth. When the cen~
ters of breakdown are not very close to each other, all kinds of distorted
bubbles and linear bubble strings will occur. Up to now, the arrangement of
these bubbles cannot be reproduced, but the pure observation of what may happen
has led to new insights into bubble behavior upon interaction. Some examples
will be given below. But our first aim was to produce single spherical bubbles
to compare their motion with theoretical models and predictions as a first step
to more complicated bubble systems.

In this paper we will mainly discuss the dynamics of a single spherical laser-
produced bubble near a plane solid boundary. Besides the well-known microjet
formation towards the solid boundary two new jetlike (or spikelike, as they
seem to be on a smaller scale) phenomena were discovered. These jets or spikes
are directed away from the wall (or, to be cautious, appear at the side of the
bubble opposite to the wall). Therefore the name counterjet is suggested. A
possible explanation for the occurrence of these jets is given below.

DYNAMICS OF A BUBBLE NEAR A PLANE SOLID BOUNDARY

Phenomena observed

A typical sequence of pictures of bubble growth, collapse and rebound taken
at 75 000 frames per second is shown in Fig. 2. The solid boundary (brass plate)
is to be seen dark in the lower part of each frame. It is somewhat unsharp
because it extends far out of the depth of field of the photographic system.
This is the main source of error in the evaluation of distance-time curves of
the bubbles to evaluate their dynamics (especially speeds of different parts
of the bubble wall). With a computer-aided sophisticated smoothing procedure
described below this difficulty could be overcome. The bubble of Fig. 2 was
produced at a distance of b = 4.5 mm from the solid boundary and reached a
maximum radius of Rpzy = 1.1 mm. Thus the ratio b/Rpay, important for a nor-
malization, becomes 4.17. This is a rather large value, nevertheless a pro-
nounced jet is produced towards the boundary on collapse by involution of the
top of the bubble. It should be pointed out that the jet (of watex) is directly
visible as a fine dark line only in the bright central spot of the bubble after
the first collapse. The conelike or funnel-shaped protrusion is a secondary
effect produced by the jet through deformation of the lower bubble wall on
impingement. The jet inside the protrusion is supposed to be much thinner (like
the fine dark line in the bright central spot). Alsoc it is believed that the
velocity of the tip of the protrusion is not the velocity of the jet which will
be higher. So we make a difference between a so-called "tip velocity” and a
“true jet velocity". Up to now only the tip velocity could be measured (see
below).

On second collapse the bubble starts as a deformed (nonspherical) bubble of a
distinct shape: flattened at the top, elongated at the bottom and with a thin
rod (or needle) of liquid connecting top and bottom. This very special confi-
guration (but always obtained by an initially spherical bubble near a plane
solid boundary) usually collapses with a formation of a jet in the opposite
direction of the first jet. This jet is just to be seen in the last frame of
Fig. 2, but its development can also be suggested by the flattening of the for-
merly elongated bottom of the bubble. Sometimes (it is believed in very symmet-
ric and undisturbed situations) no such jet is observed, presumably because the
rod of liquid of the first jet prevents its development. The explanation of
this second jet formation runs as follows. A region of higher curvature of a
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bubble wall collapses always faster than a part of a bubble wall with less cur-
vature. This statement has been deduced from experiments with nonspherical
bubbles (1) and is also supported by numerical calculations (2). The inward
motion of such a faster collapsing part of a bubble wall is not arrested when
it involutes due to the inertia of the liquid. Thus a jet is formed striking
the opposite wall and again causing a protrusion which indicates the jet (see
also (3)).

The preceding description of bubble dynamics near a plane solid boundary is
valid in the majority of cases investigated. But quite often a somewhat diffe-
rent behavior of the bubble is observed as shown in Fig. 3. In Fig. 3 only
part of the whole bubble motion is shown near first collapse. The framing rate
in this case is 300 0NO frames per second corresponding to a time interval bet-
ween frames of 13.3 uUsec. In the first frame it can be seen that the bubble is
elongated with its long axis perpendicular to the solid boundary. Then the
bubble top flattens and involutes, but after collapse a tiny jet (or spike)
sticks out of the bubble in the opposite direction! The big jet towards the
boundary develops on a much slower time scale. A possible explanation makes
use of the above statement that higher curved parts of a bubble wall collapse
faster than less curved parts. As a spherical bubble near a solid boundary
becomes elongated perpendicular to the boundary, two areas of higher curvature
develop which tend to collapse faster than the rest of the bubble (compare
(2)). Obviocusly, there must be a competition between the higher curved lower
part of the bubble tending to a higher collapse rate and the influence of the
solid boundary tending to slow down the motion of the lower part of the bubble.
It seems (because of the almost flat appearance of the bubble near final col-
lapse) that the higher curvature takes over in the final stage of collapse
and may thus be able to develop its own jet. It is believed that this jet can
only appear when there is some dissymmetry present in the bubble motion so that
the main jet downwards cannot swallow it or push it with it (because of its
higher velocity and bigger dimensions). That this may be the case is indicated
by the fact that always, when such a "counterjet" is observed, the main jet is
grossly distorted and does not develop very well. The counterjet sticks con-
siderably far out of the upper part of the bubble immediately after collapse.
This is not due to its high velocity but because the bubble as a whole is
suddenly driven to the wall during collapse. The often porcupine-like appearance
of a bubble immediately after collapse (or on collapse) may be attributed to .
the striking of the two jets (or opposite parts of the bubble wall) leading ;
to a splashing of liquid in all directions but preferably downwards, the direc-
tion of the higher velocity jet.

These explanations of the observed behavior of initially spherical bubbles
near a plane solid boundary seem probable but must be confirmed by more experi-
ments, especially with higher framing rates and higher resolution to confirm
the mechanisms. The crucial part is the final stage of bubble collapse which
is not easily accessible.

Evaluation of the Frames

As a vast number of films were taken of bubbles collapsing near solid bounda-
ries, the evaluation of bubble motion from the films became a problem. Also, as
the boundary appears unsharp on the frames the data (distance of different
points of bubble wall from the boundary) may scatter considerably unless a very
careful estimation of the grey scale the boundary exhibits is made. These
problems were overcome with the aid of a computer and a graphic input device.
The frames were projected onto the translucent plate of the input device and
the coordinates (bubble wall and boundary) fed into the computer. These data
(as indicated by the crosses in Fig. 4a) were intended to be low pass filtered
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for smoothing, but because of the steep collapse of the bubble some precautions
must be taken as to not filter out just this steep collapse. To get rid of the
sharp edges in the distance-time curves (just for filtering) of the top and
bottom curves of the bubbles (T and B in Fig. 4a) the sum (S = T + B) and dif-
ference (D = T - B) curves are calculated (Fig. 4b), the part of the difference
curve after collapse is turned about (change of sign), and both sum and diffe-
rence curves are continued symmetrically to get periodic curves without jumps
(denoted S' and D' in Fig. 4c). These curves are then low pass filtered by
Fourier transformation (FFT on the computer), weighting of the spectra (multi-
plication with a special function having low pass properties), and back trans-
formation (again a FFT on the computer). The curves obtained are denoted Sé
and Dé in Fig. 4d. These curves are then unscrambled to get the original, but
smoothed, distance-time curves of the bubble as shown in Fig. 5a.

As from the smoothed curves in Fig. 5a derivates could be taken, the velo-
cities of different points of the bubble wall could be calculated. They are
plotted in Fig. Sb for three cases. Of course, the velocity-time curves could
not be followed through the collapse for the top and bottom of the bubble as
there is a very fast change of speed and the framing rate is too slow to
follow the motion. The corresponding parts of the curves before and after
collapse are therefore connected only by a straight dotted line.

In Fig. 5 T again denotes the top of the bubble and B the bottom (after
collapse it is the tip of the protrusion). C is the center of the bubble (taken
from the central bright spot of the bubble in the frames). The framing rate in
this case is 250 000 frames per second and the ratio of the distance of the
bubble (center) and the maximum radius 3.08. The time scale is arbitrarily set
to zero at the beginning of the plot. The center curve shows that the bubble
is driven towards the boundary during the final stage of collapse and the
first stage of rebound with a maximum velocity of about 35 m/sec, attained
apparently at the very point of collapse (Fig. 5b). The bubble develops a jet
towards the boundary as can be seen in Fig. 5a from the asymmetry of the top
and bottom curves after collapse with respect to the center curve. The tip
velocity of the protrusion can be read from the lower diagram in Fig. 5. A
maximum velocity of about 120 m/sec was calculated. As mentioned before, the
true jet velocity is supposed to be higher than this tip velocity by an amount
not yet known. But in any case the experiments show that even bubbles far away
from boundaries (in this case b/Ry,, 33) may develop a strong jet (when un-
disturbed) . From these experiments it is concluded that a spherical collapse
of a cavitation bubble down to the very point of collapse is highly unprobable
in any real situation and that jet formation of a cavitation bubble on collapse
is a normal process.

Comparison with Theory

Plesset and Chapman (4) have calculated the collapse of an empty, initially
spherical cavity in the neighborhood of a solid boundary for two cases, i.e.
b/Ryay = 1 and 1.5. The case b/Ry,, = 1.5 could be realized experimentally and
thus compared with these calculations. As the instants at which pictures are
taken of the bubble do not coincide with the instants of the calculated curves,
an interpolation of the experimentally determined bubble shape is done to fit
the calculated curves. Additional difficulties arise from the fact that even
at the framing rate applied of 300 OO0 frames per second the instant of collapse
cannot be determined precisely and also from the calculations it is not quite
clear what instant may be taken as the final collapse. (There seems to be no
simple answer to this question.) Thus a more or less arbitrary estimate of the
instant of collapse, where the experimental and theoretical curves were fitted
in time, has been made and then the shape of the bubble was compared back in
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time. The result is shown in Fig. 6. The open circles represent experimental
data, the solid lines are taken from the calculations of Plesset and Chapman
(4) . The bubble has a maximum radius of R = 2.6 mm and was produced at a
distance to the boundary of b = 3.9 mm, s3%¥hat b/Rpay = 1.5. At the framing
rate of 300 000 frames per second not the total history of bubble motion could
be followed because of the limited frame number of 80 of the rotating mirror
camera used. Also the initial shape of the bubble is not truely spherical. But
nevertheless the behavior of the bubble {involution of the top and jet for-
mation towards the boundary) fits the theory almost quantitatively.

BUBBLE INTERACTION

As mentioned earlier, special precautions must be taken to get only one sin-
gle spherical bubble. Usually a linear string of bubbles is produced. All other
parameters being the same, by variation of the laser light intensity (or total
energy) it is possible to get only two bubbles along the optical axis. Up to
now the mode structure and stability of the ruby laser could not be sufficient-
ly controlled to get reproducible two-bubble configurations, but since films
are easily taken a wide variety of different two-bubble configurations could be
studied. It was noted that jet formation is predominant in bubble interaction.
When the two bubbles are produced far away from one another and are of almost
equal size, both develop a jet towards the other bubble on collapse. When the
two bubbles are very close to each other they coalesce on growth to form a
spherical or almost spherical bubble. At an intermediate distance they flatten
on growth on the facing sides and usually develop jets towards each other. An
example with a smaller and a bigger bubble is shown in Fig. 7, taken at 75 OOO
frames per second. The smaller bubble shows a peculiar shape on collapse as
the hemispherical bubbles observed by Benjamin and ‘Ellis (5). Qualitatively,
this shape can again be understood by the fact that parts of a bubble with
higher curvature collapse faster than parts of less curvature. A pronounced
jet, clearly visible in the bright central area of the bigger bubble, is formed
by the smaller bubble. It penetrates the bigger bubble and sticks out at the
opposite side. The collapse of the bigger bubble is markedly influenced by the
collapse of the smaller bubble, it collapses strongly nonspherically with one
side flattened.

A second very interesting example was obtained with one big and one very small

bubble produced simultaneously at some distance (Fig. 8, 75 000 frames per
second) . The small bubble is highly flattened attaining a shape very similar

to an oblate spheroid like the earth but with somewhat different.curvatures

at the north and south pole. It is believed that this shape is a result of

both the strong shock wave emitted on bubble formation(6) and the geometrical
interaction of both bubbles. On collapse the small bubble divides itself into
two parts and develops two jets through each of these parts in opposite direc-
tions through the north and south pole. One jet penetrates the big bubble

and leads to a division of the big bubble on collapse into two parts (not shown
in Fig. 8). This behavior of the small bubble can again be understood by the
fact that parts of higher curvature collapse faster than those of less curva-
ture. The curvature of the small bubble in the direction towards the north and
south pole at the equator is higher than at the poles. Thus the bubble con-
stricts more rapidly along the equator and the inflowing water divides the
bubble upon contact at its center. The water can be supposed to attain a high
velocity and is apparently squeezed out in the direction of the north and south
pole simultaneously because of the symmetry of the configuration. So two
bubbles each with a jet in the opposite direction to the other are formed.

The collapse of a bubble of similar shape as in Fig. 8 was calculated by Chap-
man and Plesset (2) up to near collapse, Qualitatively the calculations could
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be confirmed by this observation. Moreover, bubble history can be followed in
the experiment beyond the point of collapse giving a more complete picture of
bubble dynamics in this case.

ON THE PRODUCTION OF MANY-BUBBLE CONFIGURATIONS

Of most interest in cavitation bubble dynamics is the investigation of whole
cavitation bubble fields where many bubbles are present at a time because this
is what happens in reality. The multiple interactions may totally alter the
dynamics observed with a single bubble or with two bubbles. To start some
systematic experiments concerning these questions an extension of the method
described is presently investigated. The idea is to use holographic lenses
(i.e. lenses with multiple focal points in space) to get simultaneous breakdown
in the liquid (and thus bubbles) at different points according to the lens used.
The experimental setup will then remain simple as before.

Fortunately the question of the production of holographic lenses that will
withstand the high light intensities needed has recently been studied and
obviously been solved (7). In the technique described in (7) the holographic
interference pattern is etched in chromium or quartz layers deposited on glass
substrates. It is not a simple technique as it demands some very special equip-
ment and very careful and precise work. But the knowledge that it will work
will render it less difficult. The first step is to calculate the hologram, i.e.
the interference pattern in some plane of the different points in space (later
the focal points of the holographic lens) and a plane reference wave perpendi-
cular to the plane. Upon illumination of the hologram with the plane reference
wave, the points in space will be reproduced, and thus a lens with multiple
focal points is obtained. Several digital holographic lenses have already been
calculated on a computer, but not yet etched into quartz layers. An example is
shown in Fig. 9, where a small portion of a calculated hologramm is shown in
almost the size the electrostatic plotter produces it on paper. To plot the
interference pattern only two grey scales (black and white) were used. This
introduces higher diffraction orders, but also the efficiency of the first 4if-
fraction order is enhanced. The real drawback of having only two levels in the
plot (or hologram) is the appearance of additional points in space near the
original ones due to what may be called "cubic difference diffraction orders".
This question has been studied by several authors the first being Friesem and
Zelenka (8). The hologram part of which is shown in Fig. 9 focuses a plane wave
into 27 points in four different planes. The points are arranged in such a way
as to form the letter string "HOLO" with each letter in a different plane in
space. Fig. 10 shows photographs of the point distribution in space obtained
upon illumination of the hologram. The arrangement of the letters in different
depths can easily be noticed.

We hope that with this method it will be possible to produce many-bubble
configurations with some degree of repeatability so that their dynamics can be
investigated.

FUTURE WORK

As the first results look very promising the investigations will go on with
special emphasis on bubble interaction studies. As a sideline to these investi-
gations a holographic apparatus is developed to store the bubble fields pro-
duced in a hologram (9). Then better conclusions on the bubble shapes and their
relative location in space can be drawn. As up to now no suitable holographic
apparatus exists capable of taking holograms at high framing rates (a holo-
graphic equivalent to the rotating mirror camera) first steps towards the con-



329

struction of such a device are undertaken.
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Fig. 6: Comparison of experimentally determined bubble form (open circles)
on collapse of a spherical bubble near a plane solid boundary with
interpolated theoretical curves taken from Plesset and Chapman (4)
(solid curves). Framing rate 300 000 frames per second, maximum
bubble radius R = 2.6 mm, distance of bubble from the solid
boundary b = 3.5%m, b/R . = 1.5..
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Fig. 7: Interaction of two bubbles produced at an intermediate distance.
The framing rate is 75 OO0 frames per second, the size of the

individual frames is 5 mm x 6 mm.
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Fig. B: Interaction of two bubbles, one being small compared to the other.
The framing rate is 75 00O frames per second, the size of the
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10: Photographs of the focal point distribution of the holographic
lens part of which is shown in Fig. 9.
a) - d) Small depth of field, the four different planes of the
letters are approximately in focus,
e) large depth of field, viewpoint as in a) - d) (loss in

resolution),
f) another aspect (looking from the left) at large depth of field.
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SOME ASPECTS ON DYNAMICS OF NONSPHERICAL BUBBLES
AND LIQUID DROPS

D. Y. Hsieh
Division of Applied Mathematics, Brown University, Providence, R.I.

ABSTRACT

The general formulation of the dynamical problem of non-
spherical bubbles and liquid drops, or the problem of two ideal
fluids separated by an interface is presented both in terms of
Eulerian and Lagrangian coordinates. These formulations may also
be expressed by a Hamiltonian variational principle which takes
into account explicitly the surface energy of the interface between
the two fluids. The general formulations are applied specifically
to two classes of problems, l.e. the nonlinear oscillation of
bubbles in an osclllating pressure field and the coalescence of
two liquid drops or bubbles.

I. INTRODUCTION
- This paper reports some of the recent progress in the study of
the dynamics of nonspherical bubbles and liquid drops. To deal
with some specific problems in this category, the straightforward

. way may be the numerical methods making extensive use of computers.

~ For analytical approaches, the perturbatlion expansion based small
‘deviation from spherical symmetry of the system have usually been
—adopted in the past. Recently, an approximate method based on the
. Variational formulation seems to offer some promise for the study
" of thils class of problems, and that 1s one aspect of the problem
we shall report in this paper.

Most of the fluld dynamical problems are more convenlently
treated in terms of Eulerian coordinates. It 1s also generally
true for most studies on bubbles and liquid drops. However, there
are certain situations in which the Eulerian coordinates are not
adequate. In particular, the details of the process of break-up
and coalescence are often lost in terms of the more convenient
Eulerian coordinates. Therefore a parallel development in terms
of Lagrangian coordinates 1s very helpful and sometimes even
essential. The similarities and differences of the solutions in
terms of Eulerlian and Lagrangian coordinates, could furthermore
offer some 1lnsight for further progresses.

Thus, in the following we shall first present the Eulerian and
Lagrangian formulations of the problem as well as the corresponding
variational principles. Then we shall use the Lagrangian formula-
tion to solve the linear stability problem of a spherical bubble.
Using this solution as a guide, we shall indicate how an approximate
variational method can be developed to solve the problem of
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nonlinear nonspherical motion of the bubble. Next we shall also
use the Lagrangian formulation to treat the problem of the
coalescence of two liquid drops, one large and one small. The
approaches employed to deal with the bubble problem can of course
be adapted to deal with the problem of the liquld drops and vice
versa.

Another class of the problem is the oscillation of bubbles
and liquid drops in an externally imposed oscillating pressure
field. Here we present some of the recent results on the nonlinear
osclllation of a spherical bubble 1n an external sinusoidal
pressure field using the newly developed varlational method.
Ultimately, the variational method will be applied also to the
problem of nonlinear oscillation of nonspherical bubbles. The
present study can be considered as a preliminary step towards
that goal.

II. Eulerian and Lagranglan Formulation and the Variational
Principle.

Let F(xl,xz,x3,t) =0 (L

be a surface that divides the whole space into two regions G and
G' each occupled by an ideal, compressible fl?i?. Then the
governing equations 1n Eulerian form iln G are :

p ¥ evh) o =0, (2)
(ps) , + (psvi) =0 (3
»t 1 ’
and
J I S =
Vi,t + v Vi,J =-3 p’i R i 1,2,3, (4)

where p is the density; s, the entropy; p, the pressure and vi the

ith contravariant component of the velocity of the fluid in G; and
the general tensor notation has been adopted here. If we 1ntroduce
the internal energy function U(p,s), then we also have the follow=-
ing thermodynamic relations:

U .

5'3"’;%’ )
and

U _

Z=1, ‘ (6)

where T is the temperature.



340

An identical set of equations in primed variables can be
similarly written down for the fluid in the region G'.

On the interface F(xl,xz,x3,t) = 0, the kinematlc and
dynamic interfacial conditions are as follows:

| F o+ vip’i =0, ‘ (1)
| F p =0 8
j ,t+v F,i- ’ ()
: and

2

where o 1s the coefficlent of surface tension, and rl and r, are

the two principal radiil of curvature at the point of interest on
F=0. They are taken to be positive if the centers of curvature
lie on the side of G, and negative if otherwise.

}
i P = o=+ 1) (9)
|
i
!

; To express the same problem in Lagrangian form, we introduce

; (Xl,XZ,X3) as the generalized coordinates of a fluid particle at
i the initial moment. Thus the present coordinates of the particle,

(xl,xz,x3) are given by

f o= 2ot x2,x3,0). (10)

é while the inverse relatlion is

. o= xxt (3,530 , (11)
and t=t.

Then the equations of conservation of mass, entropy and
momentum are given respectively by:

1,2 .3

p(Xl,XZ,inp) = £, (12)
1 p(X™,X%,x7,1) .
:! S(xng2,X3:T) = so(xl:XZ:XB) (13)
sy
{ ox ;in - -p; (14)
|
H where
, 1/2
{ _ Ldet gnd™ 7 552 42 43) (15)
ldet g, 172 a(xt,x2,x%)
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and ( ) denotes the material derivative with ?espect'to time and
( ),y denotes the total covariant derivative. 2)
]

The kinematic interfacial condition is expressed simply by
the equation of initial interface:

F(x!,%2,%%) =0, (16)
while the dynamical interfacial condition 1s
p-p' = -2¢H , (17

where H is the mean curvature of the pfgient interface and can be
expressed in terms of surface tensors.

The above Eulerian formulation as given by (2)-(9) can be

shown(3) to be eguivalent to the following variational problem:
the flow fleld of the system and the motion of the interface are
such that the functional

to t2
J = f at I dv[% pve-pU] - f dat f odA , (18)
£, ¥ ty

is an extremum, subject to the constraint conditions (2), (3),
and

(pa)’t + (pavi),i =0, (19)

where a can be interpreted as one of the Lagrangian coordinates of
the fluid particles, A denotes the interface and V = VG+VG' is
volume of both regions G and G'.

To deal with regions that contain incompressible fluids or
of uniform state, it 1is fgen more convenient to use another
functional for variation 3):

ts ts
J = f at f p(H,s)dV - f dt I odA , (20)
6,V t, A

where the pressure p 1ls considered as a function of the enthalpy H
and entropy s given by the usual thermodynamic relation

dp = pdH ~ pTds, (21)

with H explicitly prescribed as
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1 2
H= - - -0t - = + +
¢,t SY =X ¢ 2(¢,i S¢’i GX’i) s (22)

where X 1s a varlable conjugate to a, while the fluid particle
velocity 1s interpreted as:

v, = ?i + sw’i + ax’i . (23)
The Lagrangian forTg}ation as glven by (12)-(17), on the other
hand, can be shown as equlvalent to the following variational
principle: the flow field of the system and the interfacial
conditions are such that the functional

t
2
I-= f dr f axtax2ax3raet g )™ 213 pogiJXiXJ-poU]
t i
1
s
- I dt [ o at’qulau? . (24)
t, A

is an extremum subject to the conditions (12) and (13), where
(ul,uz) are the surface coordinates for the interface, and a is

a surface tensor.(2)

III. The Motion of a Nonspherical Bubble.

For the study of the nonspherical motion of a system, we
often start with the study of the stability of the spherical
motion of the system. For llnear stability analysis, we usually
perturb the interface from sphericity slightly. Mathematically,
if the original Eulerlan spherical interface 1s given by:

r = R(t) ,
now we usually take the interface as given by:

r = R(t) + ag(t)Yg(e,¢),

where Ym's are spherical harmonics and ag(t)'s are assumed to be
small.

For bubbles in an incompressible, inviscid, thermally non-
conducting fluid, the stabllity problem has been lnvestigated
fairly extensively ?he linear stabllity of expanding and 6)(7)
collapsing bubbles(u) 5) as well as bubbles in oscillation( (7
have all been studied in some detall. PFor collapsing bubbles §he
nonlinear stability problem has also been treated numericallyz8
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as well as by approximate analytical methods.(g)(lo) When the
effect of compressibility and heat and mass tra?sf§r is included, '
the stabillity equations have also been derived. 10 On the other

hand, deviations from spher ca} s?ape of a drop of incompressible

fluid lead to surface waves(ll (3) or even break-up of the drop.

In this section, we shall be malnly concerned with the non-
spherical motion of a bubble in an incompressible fluid based on
the Lagrangian formulation. Let us adopt the spherical polar
coordinate systems for both the present and initial coordlnates.
Thus the system (r,6,¢) will be identified with present general

coordinates (x%,x2,x3), while (R,0,0), with (X',X2,X3). With
these identifications, if we consider the spherical motion, 1.e.

r = r(R,T), _

6 =0, (25) :

$ = ¢, :
and take the fluid in the region G as incompressible, we obtain )
from equation (12)-(17) in section II:(?)

r3 = rR3+p3(6)-D3 , (26)
and

B+ 3D% = = (p! 20 _
DD + £ D% = & (p' - 5~ - Pa) » (27)

where p is the pressure in the liquid at infinity. The equation
of bubble surface 1s

R=D, , or r=D(T) . (28)

To treat nonspherical motion, let us write

r = F(R,T) + f(R,e,°,T) I

6 =0+ g(R,9,¢,T) s

¢ = ¢ + h(R,0,¢,1) , (29)

p = po(R)T) + p](R,9,°,T) [y ‘
where

F = r3+03-03 , (30)

and po(R,T) is the solution for pressure in the spherically

symmetric case. Let us expand f and other functions in terms of
spherical harmonics, e.g.
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f(R,0,%,1) = 22 me(R,r) Y;(G,M . (31)

sm

Now let .
SR, = (B §r (D%, (D)1 . (32)

Then, it can be shown that when the perturbations from spherical
motion, f,g,h,pl, are small, we can obtaln the following linear

stability equation:

g, +2a, - [f%ﬁ - (2-1)(%+1)(2+2) —3;?] ag. = 0.(33)
P

It may be noted that when a, 1s small, the bubble surface is
given 1in terms of Eulerian ¢Bordinates by:

L
r=D+ I a,. ¥(8,%)
%,m fm m ’

and the equation (33) is the same as that derived from the

Eulerian formulation.(u) When a is not very small, as some-
times one wants to extrapolate tﬁ@ linear solutlon to the non-
linear region, the results obtained here will differ from the
corresponding extrapolation.

To treat the nonlinear problem, the variational method is
often useful when experlence or other information could suggest
good trial functions. Thus when spherical harmonics of higher
degrees are expected to be not as important, we could take the
added terms in (29), i.e. f,g,h and p , to contain only spherical
harmonics of degree 2. 1

Based on this assumption, let us treat the problem of the
axially symmetric collapse of a bubble with uniform internal
pressure in an incompressible fluid as an example, and indicate
how we approach this problem. For simplicity, we shall neglect
the surface tension. Even with the angular dependence explicltly
given by the spherical harmonics of degree 2, the functions

f,g, and p, are functions of both R and T . Thls 1s not desirable,

since the ;esulting Euler equations would be coupled nonlinear
partial differential equations., Using the solutlon of the linear
stability problem as a guilde, let us take the trial solution as:
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\
D y
r="F+ (FQ a2(T)P2(cos 8) ,
J
4 \
8 =0 - % gg a,(1) 4 Pycos ) ,
b =¢ ,
p = p(R,T) + p;(R,T)P,(cos 8) , p
where
F(R,T) = [R3+D3(T)-D231/3 s
2% "2 .
(R.T) = N P (D"D+2DD) ) 32-(D2D)2
Po s T = pm F 2 F )
and L
Da
1 2 2
pl(R,T) = po{§ [r (—;g—)TJT - FTTaZ} .

(34)

(35)

(36)

(37)

Por incompressible fluid, the internal energy term (—poU) in the

expression (2U4) should be replaced by pg Thus the volume
integral will yield fpdV in the present volume of the fluid. For
this problem with axial symmetry, as given by (15), we have

- r2 sin ©

= (r.6,-r.6.)
RC sino RO OR

(38)

It is evident the term sin 6 will cause difficulty in evaluating

the integral (24) with respect to the variable © and R.

It

may be reasonable approximation for the purpose here to replace
sin 6 by sin © in (38), then in the integral (24), the
integration with respect to R and © in (24) can be put in the

form:
t

2 - . - .
I = f at L(D(r),D(t),D(r),az(r),ag(r),az(r);p,,p',Do) . (39)

t1

The variation of I with respect to D and a,
ecupled nonlinear ordlnary equations.

tion of this approximate sche
from the Eulerian formulation

ot

will then lead to two
The“comparison of the solu-

th the corresponding solution

should be interesting.
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IV. The Coalescence of Two Spherical Drops

It has been well established that the coalescence process
plays an important role in the growth of raindrops especially in

warm clouds.(l2) Extensive theoretical and experimental research
has been carried out for the study of coalescence efficiency, i.e.
the fraction of the processes that lead to coalescence after two

raindrops collide with each other.(l3) Due to difficulty of the
analysis and the general state of art in the study of the complete
rainfall problem, it 1is understandable that there has not been
much investigation of the detailed hydrodynamics of the coalescence
process. However, 1t 1s certainly fascinating if we can follow

the coalescence process in time especilally in the viecinity of the
point of coalescence, and see how the cocalesced drop oscillates

or how the drops separate again after collision.

To approach this problem, we shall limit our study to the
coalescence of one large drop and one small drop. The initial
configuration is taken to be two drops with radii D and 4
respectively Just in touch with each other. (Fig. 1) Let us
assume d << D, and take the larger drop stationary initially while
the smaller drop as a whole has some initial velocity not
necessarily perpendicular to the tangent plane of the drops at
the contact point.

Since d << D, 1t can be argued that the free surface of the
drops does not deviate much from the spherical shape r = D, or
r = Ro, where

R, = [D3+a311/3 | (40)

i1s the radius of the coalesced drop if it is spherical. Thus,
the linear theory of the stability of the spherical motion may
be adequate for this study.

It 1s clear from the outset that the Eulerian formulation 1s
not appropriate for this problem. Because the 1nitial free
surface can not be described by the form like:

= L
r RO + Zaszm

(e,¢) ,

which implies that r is a single-valued function of 6 and ¢ . To
achieve the single-valueness of the free surface, the small drop
could be replaced artifically by a small cap with same volume

and free surface area as those of the original small drop. But
then the 1nitial contact would be a surface contact with finite
area rather than the point contact, and the detailed dynamical
process at the contact point would not be revealed.
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Therefore we should try to approach this problem by use of
the Lagrangian coordinates. We shall formulate the problem as
if the motion of the system 1s some deviation from a single
spherical drop of radius R . Let us define a fictltious initial
state or reference state af some T = Ty < 0 for which the drops
are described by

r =R,
6 =0, (41)
$ =9,
with the free surface given by
r =R, . (42)

The general state of the system are given by

r = R+f(R,0,¢,1) ,
8 = 0+g(R,0,0,1) , ’ (43)
¢ = 6+h(R,0,%,1) .,

In particular, the real initlal state at t = 0 as shown in
figure 1 is given by

r(R,9,%,0) = R+f(R,0,¢,0) ,
¢(R,0,%,0) = o+g(R,0,0,0) , (Lb)
¢(R,0,9,0) = $+h(R,0,¢,0} ,

The fictitious initlal state can be chosen 1in many ways. Or in
other words, the functions f(R,9,%,0), g(R,0,%,0) and h(R,0,9,0)
can be chosen in many ways. The only requirements is that the
states at T = T, and T = 0 are kinematically connected, since we
are dealing with drops of incompressible inviscid fluids. For
compressible or viscous flulds, the situation wlll not be so

simple.
One such solutlon is given by
r(R,0,9,0) = RH(D,-R)+H(R-D;)[H(®_(R)-0)R,+H(0-06 (R))R,] , (45)
cos[6(R,0,9,0)] = cos GH(Dl-R)+H(R-D]){H(e°(R)-0)(D+d+R3)/R1
+ H(O-OO(R))[Rgcos e+2(R—Dl)2/Dl(2R—Dl)},
(46)

¢(R,0,9,0) = ¢ , (47
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= 2 _ 2 2
D; = R,~d, R; = (D+ad)?+(R-D;)2+2(D+a)R; ,
3 [R%cos ©-D, (2R-D)1/(R-D,),

=3}
[}

Dl
cos 6,(R) = 1-2(1 - g=) ,

1
and H i1s the Heaviside function such that H(x) = { , for
b 4 0 0

AV

The correspondence between the configurations of the state
t=T, and 1=0 is shown iIn Figures 1 and 2. The same coordlnates
des%ribe the fluid inside the sphere R < Dl For fluids 1n the

spherical shell D, < R < R in Fig. 2, those with 0 < OO(R) will
occupy the small %phere in® Fig. 1, and the surface 0 = (R)

degenerates into a singular line; while those fluids with 0> 0 (R)

will spread out to fill the entire spherical shell D <R<D

in the large sphere of Fig. 1. When d << D, the state described
by (45)€U47) can be put in the form (44) with f,g,h considered as
small quantities.

It 1s easily verified that the state at T=T, as described
by (2) and (3) satisfy the equations (12)-(17) in section II,
Moreover the pressure inside the liquid drop is constant:

_ 2q
p= g, (48)

i1f outside the liquid drop 1is assumed to be free space with zero
pressure.

Now let us substitute (43) into (14) and (15), write
p = %ﬂ + pl(RsG:Q:T) s (’49)
(o)

and keep only terms linear in f,g,h and Pq- We obtain

.1

fre = -5 Gy (50)
2 o1 ,
R8¢ T T op (pl)e , (51)
R%sin0h__ = - % (bl | (52)

and

2f S~ 1 =
ﬁ—+fR+m(g sin O)e-O . (53)
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From equations (51) and (53), we obtain

2,2f 11 _
RE(E~ + TR)er = 5 5750 Lsin O(pylgly = 0 . (54)

Let us now express f and Py in terms of spherical harmonies, thus

£(R,0,0,7) = If, (R,1)YL(0,?) , 559
p,(R,0,8,7) = Ip, (R, T)Y(6,8) . =
Then the equation (54) becomes
[2Rf, + B2 (fy)pler *+ = L(4+1)py = 0 (56)
while (50) becomes
£y = = 5 (Pgplp - (57)
Equations (56) and (57) lead to
R2(pg Vpg * 2R(Pyy)g = L(A#1)py, = 0 (58)
Thus
Py (ReT) = Ay (DRY + By (1)/RM*L (59)
As Pom is finite at R=0, and we obtaln
Py (Rot) = Ay (DR . (60)

For this linear theory, the boundary condition (17) leads to

o(e42)(2-1)f, (R_,1)
(RO,T) - m o

Pym 2 . (61)
o

Thus ( Y ) (R . y
ag(+2)(2-1)F T

L ]

Azm(r) = 42 e

Rs

. (62)
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Now the equation (57) becomes

g (2+3(2-1) f,,‘m(Ro,T)RR"l

(£, ) __ = . (63)
im’TtT pR§+2
1/2
Let us denote wy = [02 2+23 2'1)] s (64)
PR
0
then the Integration of (63) yields
2R A1} 7 9 om
(B0 = = 02 [aer [ £, (R Lem 4 [ R,0)]
) ° ° )
+ fzm(R,O) . (65)

Let us denote

ar
= = = 2m
Upn () = Fon(RyT)y gy = £ (R1S0), By = 57(R,50) . (66)

m

Then after setting R=R, the equation (65) leads to
T _
2
upn() = = [ (r-thuy (e)at + a
0

_ BlmT . (67)

The last equation can be solved to obtain

Blm
uZm(T) = a, COS W, T + ;;— sin w,T (68)

Thﬁs we obtain from (65):

fzm(R,r) = (ﬁ;) [azmcos w, T f a;—-sin wlt]

af 2-1 L-1
+ [528(R,00-8, (B 10 + [£, (R,00-0, (B 1.
0 o)

(69)
szm
Now me(R,O) and 5?——(R,0), hence also a, and 8, can be obtained
from (45) and the initial impact velocity. Therefore me(R,T) is

completely determined. The solution (69) is of course the general
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solution of the problem of the linear stability of a spherical
drop in Lagrangian form. The first term represents the
oscillatory part of the motion with frequency Wo s and in the

linear range, the last two terms will make no contribution to
surface motion. Thus strictly speaking, the linear theory
presented here can only apply to the coalescence of drops by
normal impact. That flm does not depend on the solutions and

the initial condition of g and h is also an indication to this
effect. To account for the oblique impact we need elther a
second order development beyond this linear analysis or a
Judicious extrapolation of the linear results. With the results
of the linear theory avallable here, it 1s not very difficult to
develop the second order theory. However, many interesting
features of the coalescence process in the vicinity of contact
point could already be revealed from the study of the coalescence
by the normal impact.

V. -Nonlinear Osclllation of Bubbles

We shall report here the recent results on the nonlinear
oscillation of bubbles .making use of the varlational methods. The
details of the variational methods as well as the iﬁ??jf§c applica-
tion to bubble oscillation is presented elsewhere( 15), Let
us consider the adiabatic oscillation of a spherlcal gas bubble
in an incompressible fluld under an externally applied sinusoidal
pressure field. The governing equation for the bubble radius R
1s:

. . o} R, 3y
£2 ¢ oRR = “2[(2) 7017 - 20 (L _ 1y 4 Po g4p e,
PR PR Ra e (70)

RR +

rojw

where y 1s the ratio of specific heats; Ra’ the equilibrium

radius; o , a damping constant; and the last term representr
the externally applied pressure field. The damping 1s introduced
somewhat artifically. The damping due to the viscosity of liquid can
be easlly represented accurately. However it is more involved to
incorporate the damping due to thermal dissipation and the viscosity
of the gas.

Equation (70) is equivalent to the variational principle:

AT + AT =0 , (71)
wher%
7= at{R3R? + ﬁ-_%ﬂ—‘; P RIVRITIY - &R - %E(I’a - %%Z)R3
o
+ %-R3posin wt} dt , (72)
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t
and AT = - 2a f at R3R AR. (73)
(]

Now let us take

R=R +R° sin(mt+6°)+R1 sin(pmt+61) . (74)

b
In more refined treatment, we can let RO,GO, Rl and 61 all

as slowly varying function of t. Here for simplicity, we shall
assume that they are all real constants. p # 1 is taken to be
real and positive. Thus we are looking for asymptotically
periodic solutions.

Substitute (74) into (72) and (73), then for large t, the
integrals can be approximately evaluated. The dominating terms
are the secular terms multiplied by t. From the independent
variation of ARb, ARO, AGO, ARl, and AGl, we obtain a set of

five algebralc equations to determine these flve unknowns.

If we make further simplifying approximations that the
surface tension be neglected and Rb = Ra’ and the forcing amplitude

is not very large so that we can neglect the 3rd and higher or?er
small terms, then we obtain the following interesting results: 15)

For p # % , and p ¥ 2, we obtain

R, =0, (75)
However for p = 1/2, it is found that there is another branch

of the solution for which Rl # 0. This branch 1is determined by
the followlng relations:

2 2 Py _ 2 _3 2
(w -wo)RaRo + 5 cos 8, = - [ws sin(261-6°) T aw cos(261-60)]R1,

(76)

P
- 52 sin 6, - awRR = [wlcos(26,-6,)+ 3 aw sin(26)-6,)IRS,(T7)

95 - )R = —202R s1in(26.-6 ) = 3 ouwR cos(26.~8 )= - sin 25
T = Y% W5 1%’ °F o 1770’7 pR, 1

(78)

p
2 wR, = -202R cos(28,-6 ) + 3 auR_sin(26,-8,)- s cos 261, (79)
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2 _ 9 2.3 2 2 _ 3vp,
where w_ = 77 w° + 2('-Y—l)wo » Wy = 5 -
PR,

From (76)~(79), we can solve for 1,60 and 61. The

R ,R
detalls will be presented elsewhere.(IS? They contain the
information about the threshold amplitude p_. for such solution
to exist, the amplitudes and phases of the Pundamental and sub-
harmonic modes of the oscillation.

If we carry out our analysis to include terms of the 3rd
order small terms, we found that there 1s also another branch
of the solution for which RI#O if p =1/3. These subharmonic

have also been found independently by Prosperetti.(ls)

In principle, this variational technique can also be applied
to the nonlinear osclllations of nonspherical bubbles. But
there are still formldable practical problems to overcome. It
may be remarked that the variational methods has been succ?E%Sully
applied to the study of cocllapse of a nonspherical bubble.
The approximate trial solution we take conslsts of the spherical
mode and the spherical harmonic mode of degree 2. This 1is found
to be a fairly good approximation. However, for the osclllation
problem, it seems that higher spherlical harmonics may be
important and it 1s not clear that a single harmonic mode is
adequate as a first approximation. Further study in this area is
continuing.
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FIG.1. THE |INITIAL CONFIGURATION
OF DROPS
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FIG.2 THE REFERENCE CONFIGURATION
OF DROPS
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ON THE OSCILLATIONS OF DROPS AND
BUBBLES IN VISCOUS LIQUIDS

Andrea Prosperetti*
California Institute of Technology, Pasadena, California

INTRODUCTION

The normal-mode approach to problems of small-amplitude
waves in fluids is a standard one and has been widely used in the
past. The method consists in assuming an exponential time depend-
ence of the type exp(-0,t) for all the dependent variables and in de-
riving a characteristics equation for the complex eigenfrequencies
On (see e. g. Ref. 1, Ch. X, XI). The solution to a particular initial-
value problem is then obtained in the form of a series by a superposi-
tion of the various normal modes with appropriate coefficients.

In the presence of viscosity the equations governing the
motion become parabolic, and the series in question is usually very
slowly converging for small times. However, for free (damped)
oscillations, the small-time behavior is of considerable interest
for many important aspects, such as questions of stability, so that
a different form of the solution is needed. It is the purpose of the
present paper to analyze the problem from this point of view, eluci-
dating the characteristics of the small-time behavior of the oscilla-
tions of drops and bubbles about the spherical shape.

For the case of a viscous liquid drop in a medium of negligible
dynamical effects (vacuum, air) it is found that, if the motion is
irrotational at the initial instant, the effective damping and frequency
agree with those given by Lamb (Ref. 2, p. 640) and Rayleigh (Ref. 8)
for small times. However, as time passes, the vorticity that is
generated at the surface starts to diffuse inwards bringing about an
increase in the effective damping. The normal-mode results of
Chand rasekhar (Ref. 1, p. 675; Ref. 3) and Reid (Ref. 4) are
recovered as t=oo. It is interesting to notice that the relaxation
of the systermn towards the asymptotic regime is not exponential,
but only algebraic with time. Another remarkable feature is that
the asymptotic effective damping is smaller than the initial one.

% On leave of absence from Istituto di Fisica, Universitd Degli Studi,
Milano, Italy.
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Similarly, for the case of a bubble in an unbounded liquid, Lamb's
irrotational results (Ref, 2, p. 641) are reproduced for small times,
whereas the asymptotic solution coincides with that derived by Miller
and Scriven (Ref. 5) in a normal mode framework.

PRELIMINARIES

We consider a nearly spherical free surface X(t) separating two
incompressible, viscous, immiscible fluids that fill the entire space. If
body forces are negligible, the equilibrium configuration of ¥ is main-
tained by surface tension and is that of a sphere; the pressures in the
inner and outer regions are uniform, and they are related by:

2T
P} -P2* ¢ (1)

where T is the surface tension and R the equilibrium radius. The
outer pressure p., will be taken as reference value and set to zero. In
the following the subscripts 1 and 2 will be attached to all quantities per-
taining to the inner and outer region respectively. When no subscript is
indicated, reference can be made indifferently to either region.

When the equilibrium situation is slightly perturbed, the ensuing
motion is governed by the (linearized) Navier-Stokes equations:
V. T=0 (2)

0 %‘tl = -Vp - pVx(Vx 0) (3)

where U denotes velocity and p, p are the density and viscosity of the
fluids.

The surface T can be represented by a superposition of spherical
harmonics. To first order in the perturbation of the spherical symmetry,
however, the equations for the different modes are uncoupled so that we
may consider a single one; in spherical coordinates we thus let:

>(t): F(r,0,t) S r -R - ea(t)Pn(cos f)= 0, (4)

where 0< ¢ << 1, and P is a Legendre polynomial of degree n 2 2,

In writing Eq. (4) it has beén assumed for simplicity that the surface
maintains an axial symmetry; this restriction(which can be lifted by
adopting the toroidal-poloidal formalism for the description of the
velocity field, see Ref. 1, p. 622), has no consequence on the equation of
motion for aft).

In the following developments only terms of first order in € will
be retained. To this approximation the outward unit normal @ to I is
given by the expression:

. . 9P, _
BT ectR T % ®
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where e_, :9 are unit vectors in the radial and azimuthal direction
respectively.” On the free surface the kinematical boundary conditions
are (Ref. 6, pp. 60, 148):

%%4. T T)F=0 (6)
U =T, (7)
t %

where the subscript t denotes the tangential component of the velocity
to the free surface. If one of the two fluids is inviscid, only the first
condition applies. The dynamical boundary conditions stipulate that
there should be no discontinuity in the tangential stresses:

Hx[(cz-cl)ﬁ]=0,- _ (8)

and that the discontinuity in the normal stress should equal the surface
tension T times the total curvature:

H'[(%-q)ﬁ]:TV-K. (9)

In these equations the stress temsors ¢, and ¢, are evaluated on the

jnner and outer sides of T respectively, To theabove boundary conditions
the requirements of regularity at infinity and at the origin must be added.

It is convenient to separate out the effect of viscosity by writing:

—

U=;.1-+-\;

where u is the potential flow velocity of the inviscid case satisfying:

U= eV Teu=0 (10a)
F -~ =
W+u «VF =0 (10b)
- r _
3 (e %‘f+p)_ 0 (11)
From Eq. (3) one then deduces the following equations for v:
8—\: _ — - - l =,
-5;---vVX(va)+pr (12)
Tev=0 (13a)
VeTF =0 (13b)
where v= (/p is the kinematic viscosity and the pressure has been

split into two parts, p=p°+p’. In order to satisfy (13a) identically, we
introduce a stream function representation of the viscous flow field:
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>._€ 82 _ e 332
v = rzsine 3¢ °r rsing Or ee (14)

Results of the type of those obtained by Chandrasekhar, Reid,
Miller and Scriven can now be derived by assuming an exponential time
dependence of the various quantities.

SOLUTION OF THE FLUID MECHANICAL PROBLEM

The solution of the potential problem (10) can be taken from
Lamb (Ref. 2, p. 121) or Plesset (Ref. 7) as:

% = % R-H 4P (15)

- 1 n+2_-n-1
9= “T R “r iPn (16)

where dots denote time differentiation. Eq. (11) then determines the
inviscid part of the pressure to be:

Pr_2T _ep-mtlon.g
n

5 Rey )

p2° € n+2 -n-1

L -2_R r ipP (18)
2 n+l n

To solve for the viscous component of the flow we introduce the
vorticity ¥ = €7 XV, interms of which Eq. (12) becomes:

Y - -
st = - V7 X(7xa) (9
The solution can be found by separation of variables as:

® = Q(r,t) P (cos8) T (20)

where Prl1 is an associated Legendre polynomial, e = ;r X;e , and
Q(r, t) is the solution of: ®

2
-8} 90 2y 9Q AN

The boundary conditions for this equation are that 30;/3r vanish at the
origin and (72 at infinity, and that Q,(R,t), Q,(R,t) equal two functions
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Qp1(t), Qp2(t) that will be determined by the conditions at the interface Z*.

As initial condition we assume Q(r,0)=£(r), with f(r) a prescribed function.
Eq. (21) can now be solved by taking its Laplace transform with respect to

time. The solutions satisfying the appropriate initial and boundary condi-

tions in the two regions are:

~ 2
3, (. p) =<§) fpy (P In+é(r(2/v2%)

L +3®R(EP/V)F)
132 :
+ £(p)W(r, p;p)d
v—rg p pYW(r, p;p)dp
R ,
R

2 3
- p-=1{p pip/v P
P (j: Fh(o)1, 300/ )0 (22)

W(r, R;p)

3
vr In+é(R(p/v)

3

%
) =(§-) ) &ﬂ”_\’g

K, 4R (p/V)?)

+ —1§ fp'gf(p)W(r. p;p)dp
vr R

e o]
+ W(R, r;p) rp%f(p)K (p(p/v)%)do (23)
vr®K__ S (R(p/v)E n+d
ntd PV R

where the tilde denotes the Laplace transformed function, p is the trans-
formed variable and:

W(r, p;p) = Kn&(r(p/v)é)ln%(p(p/v)t) - Kn+%(p(p/v);")ln,&(r(p/v)i)

The stream function § is determined by integration of Eq. (14)
to be:

or, 6 t) = ’;::l v(r,t)[P,_,(cos6)-P__, (cos p)]

where:

-n
¥(r,t) = frn—q- c(t)-£3n+z Q(s,t) ds]

[j: s (s, t)ds - i%%r] (24)

One of the integration constants has been eliminated with the aid of
Eq. (13b) which requires:

Pt

rn-i»
+ n+

d

#In writing Eqs. (20), (21) the effect of the boundary condition (8)
has been partially anticipated in that the separation constant has
been set at vn(n+1l) instead of that at vk(k+1), with k an integer
to be determined.
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k) ,
ae(Rl e, t) - 0

and the other, c(t), is determined by the regularity requirements at
the origin and at infinity:

R
eqlt) = - j's“"znl(a,t)ds (25a)
0
[o o]
e,lt) = Rz””_[s'n“ Q,(s, t)ds (25b)
R

Now the modification to the pressure introduced by viscosity can be com-
puted from Eq. (12) with the result:

pll r\®

- (n+1)\.v1 R Qlo(t)Pn(cose)

s
P, RY ™ a. (t)P_(cosd)
-—p— -nvz (?) 20 n

In the following we shall restrict the analysis mainly to the case
in which the initial vorticity distribution vanishes, f(r) =0. This will
happen for instance if the oscillations start from a position of perturbed
equilibrium with zero initial velocity. In this case the Laplace trans-
forms of c(t) have the following expressions:

I s ®Rp/MmY

Ly RGP
~ n+2 % Kn- (R(P/V)é) |

Kpey RN

THE EQUATION OF MOTION OF THE INTERFACE

We shall now apply the remaining boundary conditions and derive
the equation of motion of the interface. From the continuity of the
tangential velocity, Eq. (7), we get:

_ 2ntl _n#2,
3" *mm B 2 @7

The continuity of tangential stresses, Eq. (8) reduces to:
2R3 el ) Qg (8) - o0 o lt)
M€y ~H2C2) TR UM ~ MRl ga

2 (n+2 -1 .
*R u+1“2“"nn'“1)a (28)

These two equations determine Qq)(t), Qp2(t) in terms of a(t); the
remaining boundary condition on the normal stresses, Eq. (9),plays then
the role of a consistency condition and yields the following equation of
motion for a(t):
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(n+l)()1+np2 Ho-idy | T
S ) R i- Z(n-l)(n+2)—R-2— a+ (n-l)(n+2);§ a

W u
+ (n-1)(n+1) FIQOI(t) - n(n+2) £ 0y, () = 0 (29)

The set of simultaneous equations (27), (28), (29) describes the motion
of the interface. It is a system of three linear integro-differential
equations, which can be solved for the Laplace-transformed functions.
The final step of inversion of the transforms, however, does not appear
to be possible without recourse to numerical methods. The following

"sections describe some approximate results.

THE OSCILLATIONS OF A VISCOUS LIQUID DROP IN AIR

We consider first the case in which the fluid occupying the outer
region has negligible dynamical effects, so that is is appropriate to
neglect ., Py compared to u,, - This would be the case, for
example, %or a liquid drop in a2 vacuum or in air. As was noted after
Eq. (7), the condition of continuity of tangential velocity does not apply
to this case, so that Eq. (27) should be neglected. Further, setting
Mp=0, p,=0 in Egs. (28), (29) and dropping the subscript 1, we get:

-n-3 _ 1n-1
2R c (t) +Qo(t)-—-T

a (30)

e

3+ 2nm-1)(n+2) Y & + n(n-1)(n+2) —— a
RZ RS

+ n(n-1)(n+1) FQ,(t) = 0 (31)

The quantity c(t) is given by Eq. (25a) or (26a). Observe first that by
combination of (30), (31) one obtains:

4 +2(n-1)(2n+1) Y 4 +nfn-1)m+2) —x a
R pR

R
-n-4“ sn+2

L2

+ 2n(n-1)(n+1) VR N(s,t)ds = 0 (32)

I Q(r,t) is so small that the last term is negligible, we can read
directly from the equation the frequency Wy and the decay constant T a
of the oscillations:

ot e £ 8 e i 1 el
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2 T
w,. = n(n-1)(n+2)
0 pR§

-r:il = (n-1)(2n+1) ;\’2-

The first of these equations is the result obtained by Rayleigh (Ref. 8)
for the oscillations of an inviscid drop, the second coincides with the
expression derived by Lamb (Ref. 2, p. 640) in the approximation of
irrotational flow. To proceed further it is necessary to express 0 in
terms of a. Taking the Laplace transform of (30) and using (26a) one
deduces that:

2 n-1% 2 L@ -
?fo(P) = -g —oial) [1 "q —_— (33)
In_%(Q)

where q = R(p/v)%: ¥ This equation shows the connection between the
superficial vorticity and the velocity of deformation of the drop shape.
Substitution into (32) and application of the convolution theorem for the
Laplace transform yields:

b4
. -1 2 - .
a+21’dla+woa+ Zﬁanl‘LQ(t-T)a(T)dT =0 (34)

where

_ [n-1}(n+1)
ﬁn - n+l

and Q(t) is defined by its transform as:

21 5(a)

Gp) =
2hhtg (@ -9l )

On physical grounds one expects the solution of Eq. (34) to have
the form of modulated oscillations; we therefore let:

aft) = Ae Ol

where A is a complex constant and o(t) a2 complex function of time. In
order to bring out the relation to the irrotational oscillations it is also
expedient to define a new dependent variable:

u(t) = exp{-[o(t)-o ]t} (35)
$It may be noted that the function T (q) = qI 1(q)/I (q) is a particular

case of modified quotients of cylinder fundtions, Which are treated in
Ref. 9.
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(where
A, (2 2%
% = Ta *l(wo'Td ) (36)
is the complex frequency of the irrotational oscillations) so that:

alt) = Ae %ty (37)

Without loss of generality we may also take u(0)=1, {(0)=0.
Substituting (37) into (34) and taking the Laplace transform we find:

p+2(r3 - 0y)+ 28,73 B(p-0y)

(38)
p2 + Z(T:;I - ch + ZBn'rél(p - oo)b(p-co)

U(p) =

The inversion of this function appears to be a hopeless task analytically,
and one must have recourse to numerical techniques for a full solution.
Here we shall content ourselves with an approximate solution valid for
small times and an investigation of the asymptotic properties for t=o.

Upon expansion of (38) in series, term by term inversion, and
comparison with (35) we deduce#:

aft) _ l+(n-1)2(n+l){732 (R F(n- 1) Vt
%o 15+« —Z)F ;Z

32
+-1-°—5:,E[5(cot) )I (7n-4)(n+l)(7),] } (39)

Figure 1 is a plot of the first three terms of this equation for
2 <n <5, There are some features of this result which are worth
noticing. The first and most apparent one is the fact that the damping
factor of the system increases with time in the ea.rly stages of the
motion. This characteristic is not surprising in view of the fact that
the energy equation can be written in integrated form as (Ref. 2, p. 581):

% = -u{‘fv wzdv+ISE-[(ﬁ e ) T) ds} (40)

where E is the total energy of the system, V its volume and S the
surface bounding V. Only the second term of this equation is nonzero for
an irrotational flow, and in our case it gives rise to the decay constant

¥It may be of some interest to note that if one requires that the first
power of time occurring in (39) be as high as possible, one obtains an
equation for % whose solution is given by (36).
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T&l in the very first, approximately irrotational stages of the motion.
The contribution of the first termn, however, increases from zero as the
vorticity generated at the surface (cf. Eq. 33) gradually diffuses into the
drop, and brings about the increase in damping shown by Eq. (39). A
remarkable characteristic of this inerease is that, although it is due to
a diffusive process, its time dependence is not tZ but only t3. This
feature,on which the small-time accuracy of the irrotational results
rests in practice, is produced by a cancellation between the lowest order
contributions (i. e. those proportional to t? and ‘t) of the convective and
diffusive terms of Eq. (40).

To investigate the behavior of a(t) for large values of time we let:

-o_t
a(t) = Ae @® v(t)

where 0 i8 a constant to be determined in such a way that:

lim v(t) = constant (41)
2o

The Laplace transform of v(t) can be expanded near p=0 with a result
of the form:

~ 1
v(ip)ec B+Cp

with B, C constants. To satisfy (41) we thus must require B=0;
this condition, written out in full, reads:

2Jn+£ (x) _o
.} xJ’n&(xj-ZJ'n_‘_g & -

1 2 -1
°m+‘”o+anTd o

2 -
00 - 2T (42)

x = R(o‘m/v)%

which coincides with the Chandrasekhar-Reid equation. It is therefore

seen that the result of the normal mode analysis are recovered asymptotically
as t- . It is interesting to note that in this limit the distribution of
vorticity inside the droplet is an equilibrium distribution which satisfies

Eq. (19) with a vanishing I.HS, Indeed, from Eqs. (33), (22), (20) one

obtains that, as p-0:

~ -1 2 n o~
B(r, 0,p) ~- 2 221 S243 T L P} (cos 0) (43)

which is a solution of Vz'&;: 0.It is easy to show that Eq. (42) holds

also for an arbitrary initial vorticity distribution. We shall not attempt
here to discuss in detail the differences between Eqs. (39) and (42). We shall
restrict our attention to the case of initially critically damped oscillations,
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Wa = 'r'l, for which the initial (irrotational) motion changes nature
becoming aperiodic, i.e. to the case:

RZ
W T~ = (n-1)(2n+1) (44)
Chandrisekhar (Refs. 1, 3) gives a short table of the maximum values M
of wgR“/v that give rise to aperiodic decay; values of woRzlv greater
than M would result in damped oscillations. The comparison with
Eq. (44) is as follows:

n=2 M = 3,630 woRz/v. =5
n=3 M = 6. 026 wORZ/\; =14
n=4 M = 8,457 .,,ORZ/\, =27

Therefore it is seen that, even if the motion is initially aperiodic, it
changes nature at a certain time to become oscillatory. This circumstance
suggests very strongly that in general the damping factor corresponding

to Eq. (42) is smaller than that given by the irrotational approximation,

but no general proof can be furnished for this conjecture. In view of our
result (33), one would then conclude that the effective damping factor at
first increases and then decreases with time.

THE OSCILLATIONS OF BUBBLES AND OF LIQUID DROPS IMMERSED
IN ANOTHER LIQUID

The case in which it is the inner liquid to have negligible dynamical

effects can be treated analogously to what was done in the preceding section.
Setting My = o, Py = 0 and dropping the subscript 2, we obtain:

4- 2(n-1)(n+1)(n+2) Yy 3+ (n-l)(n+1)(n+z)i3 a
R

PR
-n(n+1)(n+2)k\i Qglt) = 0 (45)
-n-3 2 nt2

Again eliminating QO’ Eq. (45) becomes:

3+ 2(n+2)(2n+1) Sy £ + (n-1)(n+1)(n+2)—T§ a
) R PR

o o]
+2nmil) 2R3 [ e (e, t)ds = 0 (47)
‘R
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from which the irrotational frequency and decay constant follow as:

Wl = (n-1)(nt1)(n+2) p—:-f

T;l = (n+2)(2n+1) Rlz

Both these results are given by Lamb (Ref., 2, pp. 475, 640). The surface

vorticity and velocity of deformation are found to be connected by:

~ K_ (7!
Yo 2 nt2 2 -
o = -} ?GT“[“E K:L! q]

q = R(p/v)i

and the final equation for a(t) is obtained in the same form as Eq. (34),
in which the kernel is now given by:

2K Y (q)

- . n et
dp) = - K, 3 @+ 2K @)

The small-time behavior of the modulated frequency co(t) is found in the
same way as was done before, with the result:

3 2
aft) _ 1+n(n+2)2{ 32 (MY 2 qez)( M
% 1542 (;2- 3 (;17)

3 £
25 [T (g f]e) o

The similarity between this result and Eq. (39) is apparent.

For the large-time solution the same procedure applied before
yields in this case the characteristic equation:

. mg_)% ()

-1 =0 (49)

2
c_+w,+2B c =
© "0 ""nd " xHx(‘]_'*_g (x) + zng_);‘,(x)

cczn - 2'1':1
X = (O'mRZ/v)%

pn = n(n+2)/(2n+l)
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After some simplifying mathematical manipulations, the result obtained
by Miller and Scriven by means of a normal mode analysis (Ref, 5) can
be brought to the form of Eq. (49). Again there is a striking similarity
between this result for the bubble and that obtained before for the drop,

Eq. (42).

For the case in which both fluids have non-negligible dynamical
effects (drop in liquid), the analysis is more complicated and also, for
certain aspects, qualitatively different. Physically this comes about
because the two fluids are now coupled through the no-slip boundary
condition at the interface so that Eq. (27) must be used. In this case one

finds that:

By = o 2<n-1><u2-u1>cn(qz>~3,-,‘§%uz}A‘lth. a,)

4 ' 2n+l -1
?soz(P) = W{Z(n*'z)(ul-uz)fn(ql)- n MI}A (ql: qZ)
Alag, 95) = uyCE)[1-2T @] +H,T () 1+42€ (g,)]
- 13 - -
9 = R('p/\)i) :rn = n+g /q11n+§ cn = Kn-i’/qZKn&
The equation of motion can now be written as:

(n+l)pl+n°2 ¢ . T
W—E+IO Q(t-T) &(t) dr + @U@ T5a 0 (50

where:

-1
Bp) = %2' {z B2 @t Dyt -y Tolay -2 @2nt )y (-1, 0, (a,)2

2
- 4 -2y up) T (0,06 () + Z2EL uluz}

It should be noticed that, although the irrotational frequency of
oscillation can be read from Eq. (50) to be:

2 _ (m-1)n(n+l)n+2) T
Wo n+D)p, ¥no, ;3'

(cf. Lamb, Ref. 2, p. 475), it is not possible to put (50) in a form
analogous to (32) or (47). Nevertheless the irrotational decay constant
can be determined by the method explained in the footnote on page 9 to be:
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-1 _ 1 2n+l 1
- 2 2
d 2R (n+1)pl+np2 (uz“/q""“l ,—-vz)

x{(uz-'ul)[z(n"'z)nugvl + (20t 1) up/vy - 2(n-1)@at] )ufvz]

(2ntln@t1)(o; -p5) 203
PPyl (mtl)p,y +1p,] }

It can be verified that this expression reduces to the ones for the isolated
drop and bubble when u, or ; vanish. The first time-dependent term
in the equation for ¢(t) is also in this case of order

A more complete analysis will be published elsewhere.
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NON-LINEAR EFFECTS ON DROPLET DEFORMATION

*
P.G. Simpkins
Department of Aeronautics and Astronautics
Southampton University, England

1. INTRODUCTION

When a liquid droplet moves through an ambient fluid
a natural oscillation is set up between the aerodynamic
forces tending to distort the drop, and the surface tension
forces seeking to restore the shape to the profile with
minimum surface energy. A large amount of experimental
evidence has established that when the Weber number exceeds
a value of order unity, large deformations from the spherical
profile occur and ultimately the droplet ruptures. During
the deformation process the droplet develops from a disc-
like shape into a canopy which resembles either a parachute
or a parasol. Photographs of such highly distorted drops
have been taksn by Lane and Green7, Hanson, Domich and
Adams8, wolfe? and the authorl® for a variety of liquids
from water to mercury. Figures (1) and (2) illustrate
the two types of behaviour that occur for Weber numbers
greatexr than unity and are typical of pictures recorded by
numerous experimenters. Table 1 summarizes the observations
made of the response characteristics, and illustrates the
uncertainty in predicting the behaviour. Whereas the
author's data suggests the bag response occurs at Weber
numbers below those for which the parasol is generated, the
observations of others do not always support this contention.
It should be emphasized that these response characteristics
are the result of aerodynamic forces and that the droplet
is not unstable in a rigourous sense, i.e. the distortion
does not grow exponentially in time. An instability of the
windward surface does occur when the induced acceleration
of the droplet becomes very large. The resulting Taylor
instability has been the subject of a recent paper by
Barper, Grube and Chang.ll

Although the occurrence of the large deformation and
break-up phenomenon is now experimentally well-established,
attempts to predict the incipient conditions have been
limited to semi-empirical approaches. One of the earliest
estimates of the critical Weber number We_ was given by
HBinze3 who considered the two cases of large and small
liquid viscosity. For the purpose of the discussion We,
is taken to be that value at which the droplet ruptures.
For small viscosity fluids, Hinze compared the linear
theory expressions for the surface displacement at the
stagnation point to a series of experimental observations.
By these comparisons he deduced that 6 < We, < 10 depending
on the injitial conditions applied to the drop. Such
estimates however can at best be only subjective since as
Hinze himself notes the critical deformation, which leads
to the breaking up of a droplet, has a value far exceeding
that tolerable by linear assumptions. 1In a more basic
approach Gordon? equated the energy required to displace
a_cylindrical section from a droplet exposed to an external
flow. To do this Gordon estimated the aerodynamic, viscous
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and surface tension forces and combined these with the
inertial effects to obtain an expression for time-dependent
surface displacement. As a result,a value of We_, = 8 was
predicted. Golovin%(2) examined the case in which the
external flow about the drop was assumed to be potential
but the internal liquid motion had finite vorticity. To
make this connection Golovin argued that the internal
rotational motion is driven by viscous forces in the liquid
near the interface. By equating the internal dynamic
pressure gradient to that in the external potential flow

he deduced the normal modes for the surface vibration of
the above model, and a critical value of We, = 2.5. 1In a.
subsegquent paper Golovin4(b) examined the problem assuming
a potential flow in the droplet interior. 1In that case,

he deduced a value of We, = 2.2. In both Hinze3 and
Golovin's4 work the predictions for We, are based on linear
theory and whereas Gordon's? energy method implicitly relies
on the assumption that viscous effects may be represented
as a Poiseuille flow. None of the above approaches has
accounted for the interaction which occurs between the
droplet and the external flow as the distortion grows.

Recently, calculations of the higher-order approxim-
ations to the egquations of motion have been performed by
Harper, Simpkins and Grube® in which the coupling between
the droplet distortion and the pressure distribution exerted
by the external flow on the drop are taken into account.
This paper will briefly review the nature of the droplet
response in the vicinity of the critical Weber number. 1In
Section 2 the linear theory will be described for the
limiting cases of We < 1 and We >> 1. These limits show
the droplet response to be vibratory and algebraic functions
of time, respectively. Subsequently, in Section 3, the
method of improving the estimate for the transition point
between the two response characteristics is described. 1In
Section 4 the general three-dimensional response case is
discussed and the occurrence of degenerxate oscillations is
noted.

2. REVIEW OF THE LINEAR THEORY

The vibrational response of a liquid droplet about a
spheroidal shape was originally established by Rayleighl
from a linear analysis. The shape of the droplet can be
represented in spherical co-ordinates (r, 6, ¢) as '

n = 14+ I anPn(cose) (1)
n=o

th

where n = r/R, Pn is the n order Legendre function of the
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first kind, R is the radius of the unperturbed sphere, and
the coefficients a, are functions of time. Rayleigh's
results, obtained from energy principles, showed that

an = b, cos whpt and that the non-dimensional eigen-
frequencies w, are given in terms of a modified Weber
number by

2 *
L n{n ~ 1)(n + 2)/We . (2)

The Weber number We, which is a measure of the dynamic
pressure force compared to the surface tension, restoring
force, is expressed as

ulr o
-
We = P —— = ¢ We (3)

where € = 0/5 is the ratio of the gas-liquid density ratio,
U, is the external airstream velocity and ¢ is the surface
tension. -

More generalized treatments of the droplet response
problem have been given by Landau and Lifshitzl2 ana by
Harper, Grube and Changll. The former authors have shown
that for each of the axi-symmetric modes there are (2n + 1)
oscillations, i.e. the frequencies are degenerate. This
aspect will be discussed further in Section 4. The results
of Barper, Grube and Chang on the other hand gave an
explicit result for the axi-symmetric response of a
vibrating droplet, which is

- n(2n + 1) - 2
n(e,t) l+e I === c, Pn(cose)[coswnt 1] +0(e”) (@
. n=o 4wn

The coefficients C, in equation (4) are determined from the
external pressure distribution on the droplet.

An important change in the response characteristics is
observed when cos wht is expanded for wpht << 1. 1In that
circumstance the surface displacement is found to be

ni@,t) = l+¢ I % n(2n + 1) Cn Pn(COse)t2 + 0(52) (5)
n=o

i.e. the droplet now executes an irreversible distortion which

is algebraic in time. This limiting procedure, wnt << 1,
is strictly not one which implies t + O but more realistically
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that We » ». Therefore, it may be stated that in the absence
of surface tension the droplet response to an external flowe

field is one of continuous distortion; a conclusion which is

implicit in Rayleigh's original result.

To illustrate the linearized response characteristics
consider an external potential flow associated with a rigid
sphere, for which the pressure distribution is given by

p_6) = 1 - (°/,)sin’ (6)

The droplet response to such an external field has been
established by a number of authors as

n(e,t) = 1 + -2— € Pz(cose)tz + oy, (7)

This characteristic is shown in Figure (3) from which it is
observed that the axial thickness decreases to zero when the
normalized time t = 32.7. If instead the external flow is
considered to be one in which flow separation occurs, then
the predicted droplet response is altered significantly.
Hinze3 used a pressure distribution of the form ,

9 2 "
P (8) = 1 - ( /4)sin ] 0. <8 < /3

= const “/3 < 0 <7

as a means of estimating a value for the critical Weber
number. More recently the pressure distributions on a rigid ] -
sphere recorded by Maxworthy13 have been synthesized by an | f
eighty term series and used to calculate the transient '
response of a droplet. Results taken from these calculations :
are given in Figure (4). For small times the predicted

response is in good agreement with experimental shock tube

studies, however for values of t > 15 say the predictions

are less realistic. This result is not unexpected since as

the droplet distortion grows the external flow about it is

modified. Thus, the applied pressure distribution changes

and the assumption that it is similar to that on a rigid

sphere is no longer valid, It is this non-linear coupling

which will be discussed in the next section. A comparison

between the two linear models described above and data taken !
from a bag-type response is given in Figure (5) where the. :
ordinate (P/,) is the ratio of the minor to major axes. The

data support the conclusion that for t < 15 the predicted

response is good a representation of the behaviour. However,

the predictions suggest a rate of distortion greater than

that observed.
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3. NON-LINEAR EFFECTS

The previous section illustrated how, between the
limits of We << 1 and We » =, the droplet response changes
from a vibratory characteristic to one which is monatonically
deforming in time. A question that therefore naturally
arises is, can an estimate be made of the value of the Weber
number at which the vibrational response ceases and the
continuous distortion begins? We use this aforementioned
criterion as a definition for the critical wWeber number,

We_. Other investigators, as has been previously noted, have
based their estimates of We_, on when the droplet ruptures.

In examining the higher-order terms of the equation
of motion Harper, Simpkins and Grube5 have considered the
droplet as a non-linear oscillator for which the forcing
term represents the external air flow. The non-linearity
in the problem causes a change in the modal frequencies which,
when evaluated, allows a revised estimate of the surface
displacement to be made. To reduce the algebra to manageable
proportions the external flowfield is considered to be the
potential flow given by equation (6) for which P.(8) ~ Py(cos8).
In the higher-order approximation a regular perturbation in ¢
is not uniformly valid because of the appearance of secular
terms of the form t sinwst. These secular terms arise
because the linear response to an external potential flow
has a displacement n(8,t) ~ PZ(COSG). Thus, when in the
higher-order approximation a forcing function proportional
to Py (cosf) is introduced it excites a Pjp(cos8) mode at
exactly the fundamental frequency giving rise to a resonant
condition. The PLK co-ordinate stretching technique6 has
been used to render the estimated response uniformly valid
and the correction to the eigen-frequency is found to be

We

3.85) (8)

[+] = (1..
so that to first-order, the surface displacement now becomes

cosaw,t - 1

n(é,t) = 1 + 3 € Pz(cose)

3 + 0(e”) (9)

2
w2
2
The result for the corrected eigen-frequency, equation (8),
shows that when ¢ = 1, i.e. We << 1, the effect of the non-
linear interaction is to reduce the frequency below that of
the fundamental. 1In the limit o - O with t bounded it is noted
that the droplet will begin to deform continuously as the Weber
number approaches the critical value We = 3.85. Thus the higher-

order analysis yields an estimate for the commencement of the
distortion when We a~ 0O(l) rather than the linear result
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of We - «, The reduced fregquency aw, which develops as a
result of non-linear effects is shown in Figure (6) as a
function of We.

Because of the non-linear interaction between the
distorted droplet and the external potential flowfield the
second-order correction to the surface displacement is found
to be of the form

cosaw,t cog2aw,.t
(2) 2 2 2
:} o~ ¢ 6) |K + K
n (8,t) Pz(cos )[ 1 e 2 -
2 2
sinaw.t sinaw,t
3 2
+ P_,(cosf8)K -
3 3 w3 wz

terms in cosdw4t, cosduzt

+ P4(cose) (10)

and higher harmonics

where the K's are constants to be evaluated. Two interesting
features therefore emerge from the high-order analysis. -
Firstly, an anti-symmetric term, i.e. the P3 mode, is found
in the surface displacement in response to an external
pressure distribution which was initially symmetric.
Secondly, as We increases through We_, the sign of a changes,
This sign change affects only the anti-symmetric P3(cosf)
mode because the symmetric modes only contain terms in
cosaw_t and their higher harmonics. Consequently as We
passes through the critical value the droplet response
changes. In the potential flow model under discussion it
would in effect appear as though the freestream direction
had been reversed.

4. DISCUSSION

It is of interest to consider briefly the more
general treatment of the response described by Landau and
Liftshitzl2, Let the deformed surface be described in terms
of the spherical harmonic functions ¥pp,(6,4) as

-iw t
r = R +c€e Ynm(0,4) (11)

where

Ypn(8,6) = '™ 2% (cose) (12)

e i e e g
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and p"(e) are associated Legendre functions of the first kind.
Then ?or each mode n of the eigen-frequency wp there are

(2n + 1) different oscillations corresponding tom = O, +1,

+2 ..... *n. The oscillations are therefore degenerate, since
at any particular eigen-frequency there is more than one
oscillation which satisfies the first-order equations of
motion. Since both +m give rise to the same oscillation there
are, however, only (n + 1) independent oscillations. Thus,
for the fundamental n = 2 mode, there are three independent
oscillations, (i) the axi-symmetric Pr-mode, (ii) an anti-
symmetric P&-mode and (iii) a symmetric P%-mode. The latter
three-dimensional modes are tabulated in standard textsl4.15
and shown in Figure (7). The Pi-mode gives rise to a trans-
verse oscillation which wavers about an axis through the poles
in the manner shown in Figure (7). Since the nodal line is a
great circle through ¢ = n/2 zero displacement occurs when

8 = &7/2. The P% modal response is more complicated since

the nodal lines are in planes normal to the equator through

¢ = #7/4. The projected profile in the equatorial plane
therefore resembles an ellipse whose major axis oscillates
between two normal directions parallel and perpendicular to
the freestream velocity vector. The occurrance of this P

mode is of interest since it illustrates that the droplet can
seek to become distorted in a direction parallel to the
freestream.

When the non-linear effects are taken into account it
is found that even for just a Py-mode in the external flow,
the droplet response is excited not only in the wj; eigen-
frequency, but also in w3 and wg. Thus additional degenerate
oscillations occur each associated with the higher-order
eigen-frequencies. Of the modes established by the non-
linearity, those associated with the Pg and Pﬂ—modes are of
most germane to this discussion._ These modes, whose
characteristics are similar to P;, intensify the droplets
inclination to become extended in the vicinity of the
stagnation point. At the same time the region over which
this extension occurs becomes more restricted in 6 as the
number of nodes increases with m. Whether the occurrance
of the degenerate oscillations is the reason for the two
types of response observed beyond the critical Weber can only
be conjecture at this time. It is however noteworthy that
both the bag and the parasol responses have been recorded
by different experimenters at approximately the same Weber
numbers.

5. CONCLUSIONS

The following remarks summarize the principle points
of this paper.

(i) Solutions of the second-order .equations of motion
show that for an external potential flow the fundamental



379

eigen-frequency is reduced by an amount [1 - (We/3.85)] as
a result of the non-linear interaction between the droplet
and the freestream.

(ii) The non-linear analysis suggests that the
transition from the vibratory to the algebraic response occurs
at about We, = 3.85.

(1ii) The appearance of higher-order modes in the
predicted surface displacement introduces a number of.
degenerate oscillations each associated with a particular
eigen-frequency. Specific modes of some of these degeneracies
have the effect of causing the stagnation point on the droplet
to become elongated. These degenerate modes may give rise to
the observed effects beyond We, where two types of response
occur whose characteristics resemble (a) a bag, and (b) a
parasol.
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Authors Liquid Response We Experiment
Bukhman16 Water Bag 2.3+0.4 | Steady air jet
Ethyl alcohol " " " " "
Glycerin " " " " "
Methyl benzene " " " " "
Hanson et al8 Water Bag 3.6-6.8 Shock Tube
Silicon 01l " 6.5-10.5 " "
Lane Water Bag 11 Wind Tunnel
Lane & Green7 Water Bag 5.2 Wind Tunnel
Margaivey & Taylorl7 Water Bag 6.0-6.2 Free Fall
Simpkinslo Water Bag 10-17 Shock Tube
WOlfe9 Water Bag 3.8 Shock Tube
Hanson et 318 Watexr Parasol [6.8-9.3 Shock Tube
Silicon 0il |Parasol 7-10.4 " "
Simpkins'® Water Parasol | 30-45 Shock Tube
w°lfeg Mercury Parasol 4.3 Shock Tube
TABLE 1

Observations of Large Deformation Characteristics

and their Corresponding Weber Numbers
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POTENTIAL FLOW
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DYNAMIC RESPONSE TO THE PRESSURE DISTRIBUTION ON A
RIGID SPHERE, Ra =2x105

FIG. 4.



b/a

387

1.0

08

0.6

04

0.2

~.Potential flow

-l 1
0 50 100 150
NORMALIZED TIME -t

DISTORTION OF A 4mm DROP DURING THE
INITIAL PHASE OF A BAG-TYPE BREAK UP

FIGURE S.



388

0:25
AlR: WATER
Fundemental mode D)
>
4
S o115
-
o
o
&
o
N
©
£
S 0-05
Z N
N
\
\
o
]
-0-05
107! 100 10’ 102

Weber number-We

REDUCED FREQUENCY DUE TO
NON-LINEAR EFFECTS.

FIG. 6.



389

L old

ADN3NO3AS

IVIN3BWNI3ANNS 3HL JO S3JOWn
3lVY3N3O30 3HL Ol Q3ivIay

o1

SNOILONNA 3IHAONIOIT QqQ3LVvIDOSSVY o+
0 SOO
1 SO , .+ so- o)~
i 4o
2
- N& lo.N
o1
. Joe
Pm
(9503) $dlo-v

(0 S02) N.m

02




390

DEFORMATION AND BURST OF SINGLE DROPS
IN A VISCOUS FLUID "

Andreas Acrivos
Stanford University, Stanford, California 94305

ABSTRACT

The motion of small drops in a viscous fluid is considered theoret-
ically and experimentally. Two cases are examined in some detail: drops
moving steadily in a quiescent fluid, and neutrally buoyant drops freely
suspended in a linear shear field. Theoretical expressions are presented
for the shapes of these drops, and these are compared with the available
experimental data. The conditions under which bursting of drops is expec-
ted to occur, plus the application of the basic data involving single drops to
the interpretation and prediction of the dispersion performance of static
mixers, are also discussed.

INTRODUCTION

F'low phenomena, which involve the motion of drops and bubbles in
viscous liquids, are known to occur frequently in nature and to play an im-
portant role in many processes of physical interest. Familiar examples,
taken from different branches of engineering, include: agitation induced by
bubble motion, the removal of carbon monoxide in Open Hearth Steelmaking,
mass transfer from a dispersed liquid phase into another as in liquid-liquid
extraction, lift pumps, the flow of emulsions whose non-Newtonian charac-
teristics are often very striking, the dispersion and mixing of one viscous
fluid into another, and many more. Although these systems are, in general,
much too complicated of course to permit their quantitative theoretical
description, many of their basic features can be modeled, sometimes to a
surprisingly accurate extent, by considering the detailed behavior of the in-
dividual drops in the two-phase mixture. Thus, for example, the efficiency
of a liquid-liquid extraction contacting device is closely related to the rise
velocity of the liquid drops comprising the dispersed phase, while the dis-
persion performance and power requirements of static mixers are strongly
affected by the breakup characteristics of single drops in a shear field.
Thus, the flow past single drops and bubbles is a subject not only of consid-
erable academic interest but also of potential practical applicability to many
diverse processes in engineering and science.

* Work supported in part by the National Science Foundation.
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In what follows, we shall review briefly some of the more important
theoretical and experimental results pertaining to two areas of the above
field: (a) drops moving steadily in a quiescent fluid; and, (b) neutrally
buoyant drops freely suspended in a linear shear flow. Only the case of
laminar motion will be considered.

THE RISE VELOCITY OF BUOYANT DROPS

Harper [1] has already presented an excellent and detailed review of
this subject, and hence we shall restrict our discussion to some of the high-
lights. .

The basic relation which determines the terminal velocity of a single
drop is the simple force balance

drag = 4—3‘”- a3g p-p" (1)

where a is the known equivalent radius of the drop, g is the gravitational
constant, and p and p', are the densities of, respectively, the continuous
and the dispersed phase. Thus, in contrast to many of the classical prob-
lems in fluid mechanics, the drag is given while the velocity of translation
of the body is the unknown. Of course, this is not the main complicating
feature; rather it is the fact that the shape of the drop cannot be specified
a priori, but needs to be obtained as part of the overall solution.

The problem to be solved can, therefore, be stated as follows: One
seeks a solution to the appropriate Navier-Stokes equation, in the region
both inside and outside the drop, which leads to finite velocities everywhere
and which satisfies the boundary conditions:

i) At infinity, u, - U6i3 (2)
ii) On the surface of the drop:
- - 1
a) wn, = 0, U =, (3)
- ' =
b) (0 - 045905 = ¥my on, /ox, (4)

where x, is a position vector with origin at the center of mass of the drop,

6.3 is a® unit vector parallel to the gravitational acceleration, u, is the ve-
lécity vector, U is the unknown terminal drop velocity, n, is the® unit outer
normal to the surface of the drop, ¢.. is the stress tenso} and v is the inter-
facial tension. All primed symbols J refer to quantities within the drop.
Also, we shall limit our discussion to systems with clean interfaces; i.e. we
shall not consider the effects of surface active agents which are known to play
an important role in some cases when the drop is small [1,2].

In spite of the rather simplified nature of the problem as stated above,
an exact solution cannot be obtained in general except through laborious
" time-consuming finite-difference numerical computations. It is instructive,
therefore, to examine some special cases.
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To this end, let us consider the case of a gas.bubble rising in a New-
tonian liquid. Here p' << p and p' << p, with u being the viscosity. Hence,
the independent parameters of the system reduce to the following six: U, a,
‘€» @, ¢ and y, which can be combined into the three independent dimension-
less groups

R = apU/p, W = apUZ/'y, M= gp.4/py3

where R is the familiar Reynolds number and W is the Weber number. It
should be noted that, of these groups, only M depends exclusively on the
properties of the liquid medium, while R and W depend on both the size and
the velocity of the bubble. In fact, since y and p do not vary greatly from
one system to another, M is effectively proportional to p.4.

In some respects, in the case of rising bubbles, the use of R and W
is somewhat awkward at times because, in contrast to most of the classical
problems in hydrodynamics, U and a are not independent entities since, for
a given bubble size, the rise velocity must adjust itself so as to maintain the
proper balance between the buoyancy force and the drag acting on the bubble.
Thus, U is seen to depend on a as well as on the physical properties of the
system.

Particularly simple expressions for the rise velocity U exist when
the equivalent radius a is either very small or large. In the former case,
typically for a < 10-2 cm., the bubble is spherical, owing to the small value
of W, and inertia effects are negligible because R << 1. Thus, by solving the
creeping flow equations one obtains the well-known result, first derived by
Hadamard and by Riabouchinsky [1, 3].

U = azgp/3p. . (5)

At the other extreme, i.e. when a typically exceeds 1 cm., the
Reynolds number is large and the surface tension forces negligible. Then,
as first shown by Davies and G. I. Taylor [1, 3], the bubble assumes the
shape of a '""spherical cap' and its rise velocity is given by

U = .02/ ga . (6)

The subject of spherical cap bubbles has recently been reviewed by Wegener
and Parlange [4]. As shown by Haberman and Morton [5], among others,
(5) and (6) are in very good agreement with experimental data provided that,
as mentioned earlier, the bubble surface is clean.

In contrast to the simple asymptotic expressions (5) and (6), the U vs.
a curve in the intermediate regime is somewhat more complicated and assumes
one of two possible shapes depending on whether M is large or small. Two
such representative curves are shown in figure 1.

Large values of M (M > 10'3) typically correspond to very viscous
liquids. Consequently, when a becomes sufficiently large for the bubble to
deform, the Reynolds number is still small enough for an analysis based on the
creeping flow solution to apply. Thus, as shown by T. D. Taylor and Acrivos
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[6], an expression for the deformation of the bubble can be obtained, when
both R and W are small, by means of a perturbation solution of the Navier-
Stokes equations. Actually, since the appropriate creeping flow solution
automatically satisfies the normal stress balance in (4), the deformation here
results from the effects of inertia forces; but since, as is well known, the
‘creeping flow solution does not lead to a uniformly valid approximation of

the flow far from the bubble, the analysis cannot proceed via a regular per-
turbation, Rather it requires that the method of matched asymptotic expan-
sions be employed for this purpose. The resulting expression for the bubble
shape including the additional two terms recently obtained by Brignell [7] is

w?
L - 1.37 P,(cosp) - ope Pilcosg) + WR [iz P,(cosp) - 255 P3(cos0)}

2
WR
-1 @nR) PZ(COBG) +.. (7)
where P_ and P_ are the appropriate Legendre polynomials and g is the

anmutha?‘l angle measured from the downstream direction. Thus, as can
easily be seen from (7), the bubble first deforms into an oblate spheroid

and then, following a further increase in a, into a shape approaching that of
a spherical cap. In fact, it is a simple matter to demonstrate experimental-
ly that the transition from a spherical bubble to a spherical cap is a gradual
one and that the corresponding shape of the U vs. a curve for liquids with
larger values of M is, typically, as shown in figure 1 for mineral oil.
Hayashi and Matunobu [8] have experimentally verified the Taylor-Acrivos
[6] expression for the deformation of drops as well as bubbles when R and W
are small, while Wellek, Agrawal and Shelland [9] have reported that this
expression seems to hold for substantially larger values of a, and, there-
fore, of R and W, than would be expected on the basis of the theory.

A very different state of affairs is encountered, however, when M is
small, i.e. less than approximately 10-10, Low values of M are, of course,
indicative of low viscosity liquids and hence it is quite possible that small
(and, therefore, spherical) bubbles can rise fast enough for the Reynolds
number to be large. To a good approximation then, the vorticity is confined
to a thin boundary-layer at the bubble surface plus in a narrow axisymmetric
wake, and the flow outside this region is effectively inviscid. Moreover, as
Levich [2] was the first to recognize, the rate of mechanical energy dissipa-
tion in the liquid can be determined, at sufficiently large R, from the irrota-
tional flow alone, and, therefore, an expression for the drag can be obtained
without a detailed analysis of the boundary-layer. Levich's result is

U = agp/op , (8)

which is identical to (5), the corresponding creeping flow expression, except
for a numerical factor. By considering the dissipation in the boundary-layer
and in the wake, Moore [10] corrected (8) for the effects of a finite Reynolds
number and showed that, to a first approximation

2
U= 380 1416 rY2, 0r5/6)) . 9)

The most remarkable thing about the corresponding U vs. a curve, such as
the one shown in figure 1 for turpentine, is the appearance of a local maximum
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in the rise velocity when a is still quite small. For a while, it was believed
that this resulted from the presence of instabilities at the gas-liquid inter-
face, which have been observed experimentally [11] and predicted theoret-
ically [12] to occur at values of W between 3 and 4. Moore {13] has shown,
however, that this instability is probably not the main cause for the existence
of this velocity maximum, but rather the fact that beyond a certain radius a
the bubble rapidly begins to deform into an approximately oblate spheroidal
shape, the drag of which increases with a faster than a”, the corresponding
rate of increase of the buoyancy force. Moore's [13] analysis, later refined
by El Sawi [14] consists of an irrotational inviascid solution for the flow ex-
ternal to the bubble approximately satisfying the normal stress balance-at
the gas-liquid interface, which, as seen in figure 1, is in excellent agreement
with the experimental points in the region where the local maximum rise ve-
locity occurs. This theory also predicts the existence there of a maximum
Weber number above which the symmetric shape is impossible. It is of in-
terest to note that this maximum value of W, approximately equal to 1. 6, is
almost exactly the same as that of the critical Weber number obtained by
Hartunian and Sears [12] for the onset of instability.

The discussion presented above has been primarily limited to bubbles.
The case of a liquid drop rising in another fluid with which it is immiscible
is not very different although, of course, the presence of viscous effects
within the drop complicates both the analysis as well as the interpretation
of the experimental results., For example, the extension of (9) to drops of
low but finite viscosity requires a complicated analysis of the motion within
the discrete phase [15] which has not been extended, as yet, to non-spherical
systems. Also, drop shapes have been reported which have not been ob-
served in the case of bubbles, e.g. spherical drops deforming into prolate
spheroids [8]. Thus, the subject appears to be in need of further study.

DRCPS FREELY SUSPENDED IN A LINEAR SHEAR FIELD

This case differs from that discussed earlier in that the drops are
now neutrally buoyant, i.e. force-free and couple-free, in a linear shear
field. Thus, relative to a set of axes that move with the center of the drop,
we have, in lieu of (2), that:

e 1
At infinity, w ey X +3 €55k “j Tk ° (10)

where W and e.. denote, respectively, the vorticity and rate of strain tensor
of the undisturbid shear flow.

G. I. Taylor [16] was the first to study this problem both theoretically
and experimentally for the case of creeping flow. He showed that, for the
simple shear flow

u, = Gx,8, at infinity, {11)

and for k = o /pGa >>1and ) = 1'/p = O(1), the drop would deform into an
ellipsoid with semi-axes a(l-D), a, a(l+D), where
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_ 192 +16 . -1
D= aim X - (12

Taylor showed moreover that, under these conditions, a = /4 where ¢ is
the angle between the major axis of the ellipsoid and the 2-axis. He also
considered the case of a very viscous drop, i.e. ) >>1and k = O(1), for
which he found that, again for the simple shear flow (11)

= 2 = I
D by and a =3 . (13)

In his analysis, Taylor solved the creeping flow equations for a
spherical drop and then obtained (12) and (13) from the normal stress com-
ponent of (4). Thus, this case is, in at least one respect, simpler than the
corresponding problem of the distortion of a rising drop discussed earlier,
in that an expression for the deformation can be obtained here without the
need to consider inertial effects.

Cox [17] placed Taylor's theory on a more systematic basis. He ex-
amined the general problem of a drop in both steady and unsteady linear
shear flow for all circumstances in which the drop deformation is smallf
and presented a scheme for extending the analysis to higher order in k~* or
2-1. For the 'simple shear flow (11), Cox found that, at steady-state,

o - 5(19)_+ 16) . o= Tadanlaoa/zo0, (4
4(a+) \/;okr’wam"

which reduces to (12) and (13) under the appropriate conditions.

A number of very significant experimental studies have also appeared
which have extended the range of Taylor's earlier measurements. Due to
experimental limitations, all these have been performed either in the simple
shear flow (11)--which can easily be generated in a Couette device--or the
hyperbolic flow

©p = 0, e =G {885 - 8;585,] (15)
of Taylor's four-roller apparatus. Of particular interest are the experiments
of Rumscheidt and Mason [18], who studied the deformation and breakup of
liquid droplets, of Torza, Cox and Mason [19], who examined the influence
of time effects, and of Grace [20] who conducted a thorough experimental
investigation of the phenomena associated gvith deformation and burst over
the record-breaking range of )'s from 10°° to 103, All these studies have
yvielded some extremely interesting results, First of all, they have con-
firmed Taylor's and Cox's analyses for small deformation; they have also
shown that, under certain conditions, drops can deform, seemingly indefinitely,
with an increase in the strength G of the shear rate and end up as filaments,
whereas, under another set of circumstances, they will deform only to a
moderate extent and then burst. This is illustrated in figure 2, where the
experimentally determined value of the parameter k-! required for burst is
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plotted vs. ) for both simple shear and hyperbolic flow, and in figure 3 which
depicts the corresponding value at breakup of ¢/a with ¢ being the half-
length of the drop.

Knowledge of the conditions for breakup would be extremely useful
in many practical situations. For example, it would allow one to estimate
the rheological properties of an emulsion which are known to be sensitive
functions of the average size of the droplets comprising the discrete phase.
Also, as shown by Grace [20], the basic data regarding the behavior of
single drops in shear fields can be used successfully to predict the disper-
sion performance and the power requirements of a class of static mixers.
In this context, it is undoubtedly useful to know that, as shown in figure 2,
an irrotational shear field is more efficient, for the purposes of mixing two
immiscible viscous fluids, than a corresponding simple shear, and that, for
A > 4, it would be very difficult if not impossible to mix two fluids in a
Couette device, no matter how large the strength of the impressed shear.
Evidently then there is a2 pressing need for a theory which would explain and
quantitatively predict the phenomenon of burst.

Although such a general theory is not yet available, a promising
start in this direction has recently been made by Barthes-Biesel and Acrivos
[(21] and by Buckmaster [22,23]. The first authors succeeded, after much
labor, in obtaining an additional term O(k"z) in the solution of Cox [17] and
showed that this truncated series could model the experimental results of
[18], [19] and [20] often to a surprising degree of accuracy. This is illus-
trated in figure 4 which shows, according to the analysis by [21], that be-
yond a certain value of k™%, no steady shape can exist for that particular
set of conditions (the upper branch of the theoretical curve was found to be
unstable to small disturbances [21]). Curves, similar to those of figure 4
were also computed for a variety of flows and values of ) [21,24], all of
which tend to suggest that the breakup of a droplet freely suspended in a
shear field results not from an instability, but rather from the absence of a
steady-state solution to the appropriate system of equations beyond a cer-
tain critical value of k™", The analysis of [21] is still rather incomplete, of
course, in that it consists basically of a two-term expansion about a droplet
whose shape is assumed to differ slightly from that of a sphere. Conse-
quently, it cannot describe elongated drops and, indeed, its predictions have
been found, at times, to be inaccurate and, on occasion, erroneous [21].
Nevertheless, it is believed that Barthés-Biesel and Acrivos' theory correctly
models the essential physical aspects of the phenomenon even though it is
still in need of considerable improvement for the purpose of yielding relia-
ble quantitative predictions. ‘

In contrast to [21], Buckmaster's analysis concerns a slender drop-
let, the shape of which he determined using the techniques of slender-body
theory [22,23]. Buckmaster's results are therefore exact, in an asymp-
totic sense, for very slender droplets, although unfortunately they are
limited, at present, to the case of axisymmetric flows where comparison
with experiments is not possible at this time. Nevertheless, both the re-
sults and the approach are valuable and interesting.

In his first paper{22], Buckmaster considered an inviscid bubble and
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showed that its shape was given by

_ 1 z,.2n
rz) = g g [1-G7] (16)

where z is the distance along the axis of symmetry from the center of the
bubble and n is an unknown integer. Thus, Buckmaster obtained a family
of solutions although he reasoned that the one corresponding to n = 1 was
probably the most realistic. This was confirmed by Youngren [25] who ex-
pressed the solution of the appropriate creeping flow equations in terms of
an integral involving a distribution of singularities along the surface of the
bubble, the strength of which he then determined through a numerical solu-
tion of the appropriate integral equation while, simultaneously, adjusting the
shape so as to satisfy the normal stress balance. Youngren's numerical
results are shown in figure 5 and are seen to conform to (16) with n = 1 even
when the slenderness ratio 5 /4Gpg is far from small. This observation
increases of course the potential usefulness of slender-body theories when
applied to such problems. .

Buckmaster [23] also considered the corresponding problem for a
drop having a small but finite viscosity and showed that

y 64 .1/2 2

re) = gl (1+0- 10 )5 an

where

oy -1/2
K‘GM A

Evidently, since a solution exists only if K > 8, the condition K = 8 yields a
criterion for burst which is qualitatively similar to that of [21] in the sense
that breakup has been associated with the absence of a steady state solution
when Gua/y exceeds a certain critical value.

This then appears to be the state of affairs regarding this interesting
and important problem., Clearly, a more general and comprehensive theory
would be desirable, and it is hoped that the analysis which, up to now, appears
to have been limited to creeping flows, could also be extended to cases of
finite or even large shear Reynolds numbers, Gpaz/p.. Experiments at
higher Reynolds numbers would also be welcome.
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PRESSURE WAVES IN BUBBLY LIQUIDS

L. van Wijngaarden
»
California Institute of Technology

ABSTRACT

A bubbly liquid is a compressible fluid and therefore any compression
wave of finite amplitude will tend to steepen. There are various
mechanisms, which oppose this. Discussed are three of these: 1) Dis-
persion, caused by volume oscillations of the bubbles; 2)Dissipation
of thermal and viscous nature; 3) Relaxation caused by relative motion
between bubbles and liquid. Depending on which of these dominate, the
structure of the shock wave takes a different form. Examples, taken
from systematic experiments are shown. A brief account is given of the
theon;tical considerations, which enable to explain the observed shock
wave forms.

In this talk I would like to review some of the features of pressure

waves in bubbly liquids, as they appeared during research by Dr.L.Noordzij
and myself in recent years. Details may be found in the references cited
at the end. For convenience we restrict ourselves here to spherical bubbles
with radius R, locally, and initial radius R_.The fluid phase has constant
density p., the gas in the bubbles however i8 compressible. The mixture
has, when the number density of the bubbles is n, a density

o =0 (1-8) , Mm
where g8 is the concentration of the gas by volume,

- | @
When a pressure wave passes through the mixture the bubbles execute

volume oscillations. Free volume oscillations have, under adiabatic
circumstances, the frequency

up = ( 2Ryl
;‘f‘ﬁr ®

where y is the ratio between specific heats of the gas. At frequencies
much lower than w,, the pressure inside the bubbles equals the local
pressure p in the fluid and when in addition the bubbles move locally
whith the fluid, the velocity of propagation of sound waves is, for
small 8, given by

- i
< %) 4

‘Permanent address:

Technische Hogeschool Twente, Enschede, The Netherlands.
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For very small bubbles, radius '\410-5m, the changes in pressure are
isothermal, and ¢ 1is y-] times the value of (4).

At frequencies ccﬁparable with the pressure in the gas no longer
equals the pressure in the bubblés due to the inertia of the fluid
accelerated or decelerated in radial direction as the bubbles execute
volume oscillations. As a result dispersion occurs and the waves travel
with a speed less than Cor the difference with c¢_ becoming larger when
the frequency approaches wy. °

Damping of these pressuremgaves is provided by several dissipative
effects, the main one being themmal conduction fram the gas into the
fluid. For waves of finite amplitude the above mentioned items provide
interesting phenomena. Just as in ordinary gas dynamics compression
waves are steepened because in a compressed part of the wave the speed
of sound is larger than in an expanded part. Dispersion tends to spread
the wave because high wave number parts of the wave travel slower than
low wave number parts. The two opposing effects may balance in waves 0,
permantent form, analogous to cnoidal waves on water of finite depthﬁ .
No shock waves are possible without the additional help of some dissi-
pation. Including this by a logarithmic decrement § of linear waves, we
find (see e.g. [2 ) for the pressure disturbance p=(p-po)/p° in a wave
that travels in x-direction,

3 2
N " "N c I §c 2v
3p 3 3 3p 0 3P _ 3 0 3P o,
5t o SPx T2 N ! 5 ol ° Q)

It is understood that the wave is of moderate amplitude and (5) con-
stitutes an approximation of one order beyond the linear (acoustic)
approximation. In equation (5) the third term on the left hand side re-
presents the nonlinear steepening, the fourth and fifth terms represent
dispersion and dissipation, respectively. Equation (5) has stationary
solutions in the form of an undular bore, that is a steep rise of the
pressure in front followed by oscillations about the equilibrium pressure
at the backside. These e of pressure waves were found indeed in ex-
periments reported in {ﬁ'p An example is shown in Figure 1.

Figure 1. Shock wave of
undular bore
type (A shock)
p1/p°=1.79,
B,=3.21%,
R_*1.33x10"n,

U=66m/s , -2
dA=3.3x10 m
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These experiments were carried out in a shock tube of about 1 meter
length with air bubbles of about 1 mm radius in a aqueous solution of
glycerine. The thickness of the wave, for further reference denoted

with dA’ follows from balancing the nonlinear and the dispersion temm
in (5)"and is
R
d, = .
> (6)

i {eo(p1/po-1) ,5

When p_ is the pressure in front and Py the pressure at the backside
of the“wave, we can also calculate the speed of propagation of this
shock wave. The result is

2 P,/P,-1
7ty ™
° 1- (/P ¥
for adiabatic bubbles, and
v 1P,
=411 (8)

under isothermal conditions.

Figure 2, taken from [3], shows good agreement with (7), in accordance
with the expectation that at a typical frequency U/d the penetration
depth of heat is small with respect to R .

Figure 2:Speed
of A shocks.
o:experiments.
—Theory ,for
adiabatic and
isothermal
bubbles res-
pectively.,

r 6 ¢ & 3 15 & S
A
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After the experiments of [S]hmre carried out, we built a longer shock
tube, as depicted in Figure 3 and observed that shock waves, initially
(in part A) of the form of Figure 4a,just described, took a different
form lower in the tubeceither of the form B shown in Figure 4 or of
the form C in Figure 4",

seal atr region

to vacuum pump

A
shock tube
mizture
B
s pressure transducer
C

gection for photographing *
the bubbles

air supply

Figure 3: Experimental setup.

Figure 4: This Figure
illustrates
the different
shock struc-
tures obser-
ved in the
laboratory.

a) A shock.




b) B shock.

R - i)
R Ry R R S R R

s CaLd - c) C shock..

The remainder of this talk is on this gradual change of A shocks into B
or C shocks and is a very condensed version of [4], which is shortly to
appear. The clue to the understanding of the change in shock structure
is provided by looking at the relative motion of the bubbles with respect
to the fluid. When a fluid containing bubbles is instantaneously accele-
rated to a velocity u, the bubbles acquire a velocity 3u, approximately .
In the absence of viscosity the bubbles continue to move at this velocity.
When the fluid is viscous the bubbles are gradually slowed down to the
fluid velocity. The time this process takes depends on the magnitude of
the viscous force and on the virtual mass of the bubbles. For spherical
bubbles the virtual mass is }p. times the bubble volume and, adopting the
Levich model for the flow aromﬁd the bubble, the viscous resistance is
l_iwyg times the relative velocity ; u is the dynamic viscosity of the
uid.
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The relaxation time t then is
2
= Rog | (9)
T8 .

For deformed bubbles both the virtual mass and the resistance increase
severely with the deformation but, surprisingly gnough, t remains vir-
tually unchanged for not too large defomatim{ri .When a pressure wave
in the form of a step function enters the mixture at t=o,the mixture
reacts for times t<<tr as if the fluid were inviscid. The bubbles are
free to move relative to the fluid and the velocity of sound is not as
given by (4) but is

2 _ 2 |
cg = cg (1428 . (10)

The sound velocities c:2 and c2 may be compared with the equilibrium and
frozen sound speeds inochemicglly reacting gas flows. In part A of the
shock tube of Figure 3 viscosity does not yet resist relative motion and
the shock is of the undular bore type, however with Ce in stead of c_.
The expression for the speed of the shock wave is °

U2 1
1 P1/P° -1 pO ;
— e el 14 (14 2) amn
2 ! ot P )

Y 1
< 1-(p/P)Y

but the effect of 8_, (as compared with (7)), is too small to be
measurable at valuef of g_ of a few percent.

For times t comparable with t or, in terms of distance, at distances
along the tube of order c.r, viscous forces tending to decrease the
relative velocity become rtant. T‘Qey hgve a diffusive action on the
wave with a diffusion coefficient t(cy - ¢7). This diffusion resists
nonlinear steepening and may, at low enoﬁgh pressure ratios, even
completely balance the nonlinear steepening. When this happens, the pro-
file of the wave is smooth. The wavelets in the front of the wave can at
maximm travel with the speed c.. The speed of the wave is given by (7),
whence by expanding (7) for smafl values of p1/po-1 , we find for the
threshold of these smooth waves

=1 (12)

Indeed for values of p1/p satisfying' (12), completely smooth waves,
C waves, were found in th® lower section of the shock tube. An example
is shown in Figure 5- The thickness of these waves is much larger than

dA' We find

dC=UT ’ (13)
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Figure 5. An example of a C shock. p,/p_=1.07, 8,=4.17%, R0=1.15x10-3m,

U=65 m/s, d_=2,1 m, 1+48 y 7= 1.1,

which is in our experiments, with U'—'1O2 m/s and T=10_E , of the order of
magnitude of 1 m, whereas d, is typically of order, 10 “m. There remain to
consider the type of shock flaves shown in Figure 4~ which we denote with
B shocks. They can be explained as follows: when the distance along the
tube is comparable with or larger than Ur, diffusion is active but no
smooth profile is possible when p,/p. exceeds the value given in (12).
Therefore the shock has a thin froAt,oof order dA, of the A type. At this
front the pressure rises to a value in between p_ and p. We denote this
pressure with g% The remainder of the pressure iflcrease takes place over
a distance of order Ur over which nonlinear steepening is, as in C shocks,
in balance with diffusion by relaxation. The value of p"is fou‘r}d by obser-
ving that the thin front shock must obey equation (11}, with p in place

of p., whereas the whole wave obeys equation (7). Equating the righthand
sided of these equations, with p*in stead of p; in (11), gives for the
quantity
F g_p" (14)
P17P, ’ '
the expression 1
c1.a 1+/p)Y
2 Y
1-U” (p./p4)
c—z O 1 ,

[o}

Qualitatively the form of the B shocks may therefore be interpreted as a
thin front governed by the balance between nonlinear steepening and dis-
persion followed by a much thicker region where steepening is resisted by
relaxation.
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In figure 6 an example of a B shock is given. Quantitatively a check on
the theory is possible by comparing the experimental data for F with the
theoretical result (15). This is done in Figure 7.

o pf SR C Al SO L Figure 6. Pressure re-
i SN SR i Sl R cording of a
T 1 e B shock.
1 p1/p°= 1.81,
St 4 44 WMA bt uo 80‘ 1'17%'
. & R = 1.07x107m,
f - U=108 m/s,
4 o dA= 4.3x10°2m,
5 dB=0.S4 m
OTT 3 PNre an Foxp=0.61.

Figure 7. The quantity F (equation 14) as a function of pl/p with 8
as parameter. -2 ° °
------- theory; o exp, B = 0.87 x 1(_)2
—emimememi-a=. " moexp, %= 3.1 x 10
The solid line gives for compafison the values for F when
thermal relaxation were dominant.



413

The broken lines correspond to constant values of g .The solid line in-
dicates the behaviour of F when relaxation of thermil nature were the
dominant process. In that case the equilibrium and frozen speeds are
coy-; and Cor Smooth profiles would occur below the pressure ratio

e | (16)

Figure 7 shows that thermal relaxation cannot be ruled out in our ex- ,
periments, but the fact that we found no C shocks in the range of pressure

ratios between y and 1+8yR /1+y indicates the predominance of relaxation

associated with relative flotion.

1 Wijngaarden, L van J.Fluid Mech. 33,465,1968
2 id. ' Ann.Rev.Fluid Mech. 4,369,1972
3 id. Progr.Heat and Mass Transfer 6,637,1972

4 Noordzij L, Wijngaarden L,van J.Fluid Mech. to appear.
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MODELS OF SPHERICAL-CAP BUBBLES
R. Collins

Department of Mechanical Engineering, University College London.

INTRODUCTION

From the close correspondence between their theory and experiments
which had related bubble velocity with apparent radius of curvature, Davies
& Taylor (see Ref. 1 & 2) concluded that the flow near the front of a
real spherical-cap bubble must be very close indeed to the irrotational flow
near the front of a complete sphere of the same curvature,as they had assumed
in their theory. They expressed some surprise at this result of their work.
In fact the equation derived from their assumption about the flow agreed
better with the experimental measurements of bubble velocity than 4id an
equation of similar form derived from measurements of the pressure distribut-
ion on a solid model of the bubble cap, which had been obtained in a wind
tunnel at high Reynolds number. Although their assumption works so well,
it does not give the required constaney of pressure on the bubble cap except
in the immediate vicinity of the stagnation point,where the static pressure
is constant to a first approximation, that is as far as terms of order 02,
© being an angular coordinate with origin situated at the centre of curvature
of the cap. Some time later, Rippin (Ref. 3 & L) investigated the possibility
of improving the pressure distribution and he followed Moore's suggestion
(Ref.5) for an inviscid model of the flow rather like a Helmholtz free-
streamline flow in which an infinite open wake of stagnant fluid followed
the bubble. The numerical solution which he found did give a virtually
constant pressure over the bubble cap, but agreement with experiment, as far
as the relationship between bubble velocity and curvature was concerned, was
essentially destroyed since the velocities predicted were almost 30% too
high. This curious situation in which & model satisfying the constant
pressure requirement only approximstely was apparently superior to a model
in which that condition was approached as closely as practicable prompted
the work reported in Ref. 6. The procedure adopted there was to apply a
small perturbation to the flow assumed by Davies & Taylor so as to improve
the pressure distribution. This contrasts with the gross perturbation
implied in adopting the infinite open-wake model. It was found with this
small perturbation that the pressure condition could be satisfied as far as
terms of order 6% near to the stagnation point thus producing a second
approximation, and the slight adjustment in velocity given by the theory
gave a result in excellent agreement with experiment. It was shown also
that the relationship between bubble velocity and the radius of curvature
at its stagnation point was uniquely defined by the acceleration of liquid
along the bubble surface at the stagnation point and Batchelor (Ref. T)
has pointed out that, at the high Reynolds numbers relevant to this problem,
the result is exact.

In work unknown to the author at the time of writing Ref. 6,
Temperley & Chambers (Ref. 8) had also tried to improve the pressure
distribution given by Davies & Taylor's approach by incorporating a sink
term into their velocity potential and also by considering a source alone,
but although they were able to satisfy the constant pressure condition to a
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second approximation with the first of these approaches, they acknowledged

that the relationship between velocity and curvature which resulted from

their work was in poorer agreement with experiment than was Davies &

Teylor's result. More recently, Harper (Ref. 9) has shown that an alterna-

tive closed model can also produce a second approximation which agrees

with experiment but he saw the fact that his model required a flattened

sphere while Ref. 6 produced an elongated sphere as a deficiency of this

approach. He subsequently concluded that infinite, open, stagnant-wake

models did give useful approximations to the flow field over the front

part of the bubble and,in a similar vein,Wegener & Parlange (Ref. 10)

stated that results from such models agreed fairly well with experiments ;
when the wake is turbulent. The purpose of this paper is to consider ‘
these views in the light of evidence available.

COMPARISON BETWEEN THEORY AND EXPERIMENT

Using a system of spherical polar coordinates whose origin is located
at the centre of curvature of the bubble boundary at its stagnation point, S,
the velocity,U,of a large gas bubble moving with high values of Reynolds
and Weber numbers has been shown (Ref. 6) to be given by the equation

vie)? = 1/(an/ae),. (1)

Here g is the acceleration due to gravity and a the radius of curvature

of the bubble boundary at S, while h(©) describes the variation in the
magnitude of the liquid velocity on the bubble boundary through the relation
q = Un(®). As anticipated on dimensional grounds, the bubble Froude number
is constant. In attempting to predict this Froude number the primary
objective is to formulate a model whose geometry provides a proper description
of the flow over the bubble cap so that the quantity (dh/d®) _ may be
accurately determined. (The suffix indicates that the derivative is to be
evaluated &S.) If a model produces &n incorrect value, it may be inferred
that it gives an inadequate description of the flow in that region. The
standard for comparison here is of course the experimental evidence which

is expressed in terms of an apparent radius of curvature, &, rather than a.
A relationship between T and a is readily determined for any model

(Ref. 6, 9) and, as the name for this class of bubbles suggests,a/a does not
differ greatly from unity. The combined experimentsl results of Davies &
Taylor, who measured bubble velocities in nitrobenzene, and of Rosenberg
who used water (Ref. 11), show that

U/(gE)A = 0.65 . - (2)

The table overleaf shows values of this Froude number given by the various

models previously described. The column labelled "Difference" shows the i
percentage departure from the experimental value in equation (2). What seems
apparent from this table is that there is very little evidence to support

the contentions that open, infinite wake models provide useful approximations
to the flow over the front of the bubble or that they give results which
agree fairly well with experiment.
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Theoretical models

Authors Dates UZS&:)l Difference Geometry

g:;i:: & :;g& 0.666 2.5% sphere
Temperley s 0.54 17% approximate cardioid
& Chambers 0.82 26% open, infinite wake
Rippin '59 0.8k 29% open, infinite wake
Collins 166 0.652 0.3% perturbed sphere
Harper 72 0.643 1% oblate spheroid

Harper emphasised the superficial differences between the perturbed
sphere used in Ref. 6 and his own oblate spheroid Further consideration
of these two shapes does reveal, however, that they have a more important
similarity. Two influences on the flow in the vicinity of the stagnation
point S may be identified. The first is the effect of the gross features
of the complete flow at that point, that is whether the boundary shape
employed is open or closed, the second is the effect of the local changes
in curvature in the boundary. Clearly, the modified shapes are introduced
in both cases in order to change the curvature, for constant curvature
has been seen not to produce a constant pressure. If the local distribution
of the radius of curvature,w, in the vicinity of the stagnation point is
evaluated for both these second approximations then it is found that for
the perturbed sphere

w = a(l -0.9482........), (3)

while for Harper's oblate spheroid

w = a(l -0.502 ........), (%)

where a is again the radius of curvature at S. Thus, in addition to

both models being closed, both show that in order to produce a flatter
pressure distribution the radius of curvature of the boundary should
decrease along the bubble surface moving away from the stagnation point.

It may be observed that the only known exact solution to the two-dimensional
form of this free-boundary problem which satisfies the constant pressure
requirement at all points on a cycloid also shows the same dependence of
won © (Ref. 12). Following Davies & Taylor's interpretation of their own
close agreement with experiment, it is concluded that the flow near the front
of spherical-cap bubbles must be very close to the irrotational flow near
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the front of an approximately spherical closed body whose radius

of curvature in the region of the stagnation point varies as 1 - ko2,

It is stressed here that this conclusion does not say that the real flow

is irrotational everywhere outside the closed boundary as some critics

of this approach have implied. We turn now to the evidence concerning

the gross features of the flow patterns associated with spherical-cap
bubbles in order to see whether this can explain why closed wake models are
so successful.

FLOW VISUALIZATION EXPERIMENTS

Spherical-cap bubbles are conventionally classified as those
bubbles which rise with velocities independent of the properties of the
liquids in which they are blown (Ref. 11,13). Haberman & Morton (Ref. 13)
related bubble velocity with the equivalent spherical radius, T through
the equation

U = 1.02 (gre)s, (5)
and they also showed that the parameter which determines the attainment of
the spherical-cap class in a liquid of density, p, and surface tension, O,

is the Weber number

We = pU22re/o . (6)

In Haberman & Morton's wordsthis should exceed "about 20", the lack of
precision arising because there is no abrupt transition to sphericel-cap
behaviour. In fact & more stringent assessment of figure 21 in Haberman

& Morton's paper indicates that complete independence of liquid properties
would imply s somewhat higher value, but their value will be used for

the moment recognising that it is optimistically low. Combination of these
results shows that in order to form a spherical-cap bubble in a given liquid
the minimum volume of gas required is

3/
v, = 125(o/gp) .2 (M

In the table below the values of V_ appropriate to two liquids of interest,
water and nitrobenzene, are compargd with the volumes of gas actually
employed by various other investigators (Ref. 2, 11, 14, 15, 16) to generate
what they regarded as spherical-cap bubbles in these liquids. It may be
observed that in all investigations except Maxworthy's, the volumes

employed exceeded the minimum required.
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Minimum Volumes Vo

Liguid Vv (ml) Volumes Employed (ml) Authors
Nitrobenzene 0.9 1.48 to 33.8 Davies & Taylor
L.h to 200 Davies & Taylor
k.8 to 125 Rosenberg
Water 2.5 > T.2 Slaughter
4.5 to Lo Davenport et al
1.5 and 2.5 Maxworthy

Maxworthy's 1.5 ml bubble is certainly too small and the ambiguous status
of the 2.5 ml bubble may be resolved by reference to other investigators'
criteria which serve to confirm that Haberman & Morton's criterion is set
too low. For example, Rosenberg concluded that & minimum volume of 2.85 ml
was required in water but he also stated that for transition to spherical-
cap form to be complete, a minimum of 4.2 ml was necessary, and in those

" experiments where he actually measured cap curvature he used values in

excess of 4.8 ml. Davenport, Richardson & Bradshaw (Ref. 15) quoted a
minimum of 4.5 ml while Slaughter (Ref. 1l4) placed the end of the preceding
ellipsoidal class of bubbles at 5.6 ml and found agreement with equation

(5) at volumes above 7.2 ml. Slaughter also found that bubbles with

volumes between 1.5 ml and 5.6 ml rocked regularly from side to side and he
regarded them as falling in a transitional regime. Similarly, Rosenberg
described bubbles whose volumes ranged from 0.7 ml and 2.9 ml as in
transition with irregular shapes which fluctuated continuously. Maxworthy's
finding that both a 1.5 ml and 2.5 ml bubble exhibit a turbulent

amorphous wake stretching far downstream is entirely consistent with these
statements for the rocking motion is most likely to be associated with
periodicity in the wake. It is clear, however, that since the bubbles
employed were not large enough to fall into that class, Maxworthy's evidence
is inadmissible in a discussion of spherical-cap bubbles. The reviews by
Harper (Ref. 9) and Wegener & Parlange (Ref. 10) have, however, quoted it
without criticism. As far as the turbulent nature of the wake is concerned,
it is not necessary to perform additional experiments to demonstrate this
since it is already evident from Davies & Taylor's photographs and from their
calculations of energy dissipation {Ref. 1 & 2). Batchelor has also

argued (Ref. T) that the fact that the velocity of a spherical-cap bubble

is independent of liquid properties implies that the energy dissipation process
in the wake must be turbulent. The question to be decided, however, is whether
there is a structure to the flow in the wake on a scale larger than the scale
of the turbulence.
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Indirect evidence of structure in the wake of spherical-cap
bubbles already existed before the flow visualization experiments reported
here were performed. -Davies & Taylor's photographs had shown a region
of turbulence directly behind a spherical-cap bubble in nitrobenzene,
'two-dimensional' versions of these bubbles formed between plane
parallel plates exhibited a double vortex immediately behind the bubbdble
(Ref. 6), and Temperley & Chambers (Ref. 8) recorded that their experiments
in water agreed with Davies & Taylor's because they had observed clouds
of small bubbles following each large one. The bubble volumes used in the
experiments with water presently reported ranged from approximately 40O ml
to 90 ml so as to ensure that the bubbles were unequivocally of the
spherical-cap class. These observations were noted in 1966 (Ref. 6),
they were reported informally at a Euromech Colloquium in 1968 (Ref. 17)
and one of the still photographs was published by Batchelor in 1967 (Ref. T).
In Wegener & Parlange's review article which was particularly concerned
with visualization of wakes, this evidence was not considered.

The tank and method of bubble generation have been described
elsewhere (Ref. 18). 1In some experiments,smallsatellite bubbles which
occurred naturally during the generation process were used for flow
visualization as in Temperley & Chambers' experiments. In others, tablets
of a proprietary soluble aspirin ("Aspro") were used to provide white tracer
perticles. These were either introduced into the bubble path in a plane
or column above the bubble generator, or they were allowed to form a cloud
of material just above the point of generation. The advantage of using
this material as a tracer was that a little time after the passage of one
bubble the particles had dissolvedthus leaving the tank clear for the
next experiment. Dispersal of insoluble so0lid meterial or diffusion of
dye between bubble and tank wall, in contrast, tends to obscure the detail
which of interest.

The flow pattern seen naturally depends on the frame of reference
of the observer. Cine film of the motion (Ref. 19, shown during presentation
and available on loan on request) taken with camera fixed reveals the presence
of & toroidal vortex behind the bubble accompanying a region whose boundary
is roughly the spherical surface which continues the bubble cap. With
still photographs this feature may be inferred using short time-exposures
while panning the camers with the bubble as in the example in figure 1. Behind
this bubble, whose volume is approximately 4O ml, are some secondary bubbles
contained in a cloud of tracer -material which has been transported upwards
from the region just above the generator where it had been introduced. Some
tracer material was introduced also into the flow outside the cap/vortex
boundary in this case. Photographs obtained with camera fixed confirm the
nature of the flow pattern although they require a little more interpretation
because the bubble moves past the camera during the time-exposure and
thus does not appear clearly on the print.

In figure 2, the brightest patch to the upper left of centre is due
to light reflection from the left-hand side of the bubble which,in this
instance also,had & volume of approximately LO ml. The streaks
below and to the right of this patch are from tracer particles in the closed
region of the wake and the fact that the vertical dimensions of patch and
streaks are of the same order implies that they move  together through the
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liquid. Tracer particles were also introduced outside this region in this
case and the flow pattern observed there bears a striking resemblance to
that of the irrotational dipole which is shown on the right-hand side of
figure 3. An irrotational dipole gives the instantaneous streamline pattern
to be expected from the motion of a sphere in an inviscid liguid, but the
reel ligquid of course has viscosity and the real flow cannot be irrotational.

The approximetely spherical surface presented by the bubble cap and the primary

closed part of the wake is the source of vorticity in these flows (which

in figures 1 & 2 have Reynolds numbers of 0(10h)), so that the interpretation
of the reel pattern of figure 2 is that it closely resembles the pattern
which one would expect to be produced by the movement of a sphere on which
boundary layer separation was absent or delayed until close to the rear
stagnation point. In figure 2, a band of turbulence is discernable behind
the closed region. This secondary wake is taken to be produced by the
confluence of the boundary layer at the rear stagnation point of the

primary closed part.

Figure 4 shows the model of wake structure which emerged from these
experiments (Ref. 19 ,20 ; the boundary layer thickness on the cap is
exaggerated in this figure). It is unlike that envisaged in Rippin's work
where the boundarylsyer was taken to separate from the bubble rim to produce
an infinitely long open stagnant wake of liquid which moved with the bubble.
The instantaneous streamline pattern for such a model is sketched on the
left-hand side of figure 3, but since this pattern has not been observed,
it is concluded that the model does not provide an acceptable description
of the real flow. This is why it is unable to produce an accurate value for
Froude number as shown in the earlier table. By the same token, figure b4
provides an explanation of the success of closed models for the system of
bubble and primary wake does offer an approximately spherical boundary to the
flow.

On solid spheres the pressure distribution over the forward region
is known to be similar to that given by irrotational flow theory even in
the condition when the boundary layer is laminar and separates before the
maximum transverse dimension is reached. Boundery layers on free surfaces
are less prone to separate in adverse pressure gradients than their counter—
parts on rigid surfaces (Ref. T7), so that in the bubble problem where the
boundary layer has this different character and does not appear to separate
from the surface of the primary wake, correspondence between irrotational
flow theory and the flow over the forward part of the bubble is likely to
be excellent. Closed models of the turbulent wake of spherical-cap bubbles
thus have a rationale. As with other boundary layer approaches, the logical
first approximation to the flow shown in figure 4 is the irrotational flow
past the closed boundary. An understanding of boundary layer behaviour leads
one to expect that flow to provide a very good description of the real flow
in theregion of prime interest,that is near to the front stagnation point,
but leads also to the recognition that it will be inadequate to describe
the details of the real flow over the rear part where the boundary layer
thickens in the adverse pressure gradient. In order to remove an apparent
misconception which was raised in Maxworthy's paper and is echoed by Wegener
and Parlange it is stressed again that use of a closed model for the
flow over the cap does not imply & belief that the real flow is irrotational
everywhere outside the closed boundary.
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Although Wegener & Parlange recognised the existence of a closed
structure in the wake for large bubbles whose wakes were laminar (and
whose velocities are thus dependent on liquid properties) their view
was essentially that once transition to turbulence occurs, the wake
becomes amorphous. Their method of flow visuslization was a schlieren
technique which certainly does reveal the extent of the turbulence
but is not particularly suitable for revealing flow patterns since the
paths of individual particles of fluid are not readily identified. The
main features of their figure 5 showing turbulence behind spherical-
cap bubbles in water are not inconsistent with figure 4 here, in
particular the curvature of the edge of the turbulent region immediately
below the bubble which continues the cap curvature implies order in the
flow there,consistent with a primary wake vortex. In fact Wegener &
Parlange record in a footnote that they have observed satellite bubbles
to recirculate in this region and, as in the present experiments and
in Temperley & Chambers' observations, this implies the existence of
a mass of liquid in that region moving with the bubbles. The 'edge'
of the turbulence in the secondsry part of the wake is of course not
& streamline in the flow, and the photographs do not demonstrate the
existence of a wake of the Helmholtz type.

CONCLUSION

Closed wake models accurately describe the flow near the front
of spherical-cap bubbles giving results in good agreement with experiment
because they take into account the geometry of the real flow.
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Figure 1. Streamlines relative to a 40 ml bubble




424

Figure 2. Instantaneous streamlines, 40 ml bubble
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infinite open wake irrotational dipole

Figure 3. Instantaneous streamline patterns
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vortex
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Figure 4. Wake structure inferred from experiment
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THE APPLICATION OF DROPS AND BUBBLES
TO FLUID FLOW MEASUREMENTS

E.F.C. Somerscales
Rensselaer Polytechnic Institute

This paper is concerned with the characteristics of drops and
bubbles when used as flow tracers for the quantitative study of fluid
velocity. Particular attention is paid to the practical aspects of
assessing and choosing bubbles and drops for flow measurement. Both
laminar and turbulent flow situations are considered. The determina-
tion of the dynamic characteristics of bubbles and drops is discussed
together with the physical properties required for such a determina-
tion. The effect of extraneous force fields, particularly gravity,
is reviewed. The theoretical and practical aspects of introducing
bubbles and drops into the fluid are considered. The paper concludes
with a discussion of the types of bubbles and drops, their selection
and a review of previous applications.

Manuscript was not available from the author at the time the proceedings
were submitted to the printer.
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A Review of
THE DYNAMICS OF BUBBLES AND DROPS IN A VISCOELASTIC FLUID

E. Zana and L. G. Leal
Chemical Engineering, California Institute of Technology

I. INTRODUCTION

Some of the most important processes in the chemical industry involve the
motion and dissolution of gas bubbles and drops in viscoelastic suspending fluids.
Nevertheless, relatively few investigations have been undertaken to date which
consider these problems either experimentally or theoretically. In this paper
we briefly review recent research progress. The paper is split into two parts.
In the first, we recap the rheological behavior of a viscoelastic fluid in
general viscometric of elongational flows. In the second part, we describe
recent observations and/or predictions for several diverse types of bubble or
drop motion, concentrating on those effects which appear to us to be primarily
due to the non-Newtonian rheological properties of the suspending fluid.
Although most of the macromolecules which are commonly used to produce visco~
elastic solutions are also moderately strong surfactants, we will not be
specifically concerned with the related interfacial or surface effects. In
addition, the many papers which describe theoretical calculations of bubbles or
drops in power-law type non-Newtonian fluids will not be considered here.

II. RHEOLOGICAL PHENOMENA IN VISCOELASTIC FLUIDS

In general, the features characterizing most realistic viscoelastic fluids

may be summarizedf as a nonlinear relationship between stress and bulk deforma-

tion rate (specifically, the symmetric rate of strain tensor) and a memory

for past configurations which diminishes on a time scale A. The stress at a

particular point in space thus depends not only on the instantaneous deformation

rate, but on the history of deformation of the fluid element which occupies

that point. In steady viscometric flows (i.e. shear flows), these features

lead to a decrease in the effective viscosity with increasing shear rate and

the existence of non-isotropic normal stress contributions which correspond to

an extra flow-induced tension or compression in the fluid.*f
Although these effects are well-known, they constitute only a portion of

the picture for most problems in bubble and drop dynamics where the local fluid

1-

with apologies to any rheologists in the audience

T A fluid whose only non-Newtonian characteristic 1is a shear-~thinning viscosity
will be called purely-viscous. The power~law model is the most common des-
cription of such a fluid. ;

1-
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motion near the bubble or drop is almost always unsteady in either a Lagrangian
or Eulerian sense. When the flow is not steady, the mechanical behavior of the
fluid depends strongly on the time scale of change in the flow, T, compared
with the intrinsic scale A of the fluid's memory. Provided T >> A, the material
response will be closely similar to that in steady flow. However, when T and
A are of comparable magnitude, the fluid microstructure lags behind the imposed
deformation and the stress both increases relative to that in a purely-viscous
fluid and shows a phase lag relative to the deformation. For example, in rapid
start-up of a viscometric flow (or rapid increase in deformation rate from one
steady value to another), there is a characteristic overshoot of stress which
approaches the steady-state value in an oscillatory fashion with a period of the
order A. Similarly, if a steady flow is suddenly stopped, the stress does not
return instantaneously to its rest value, as it would in a purely-viscous fluid,
but rather relaxes on a time scale which is again related to A. In additionm,
1f the driving force for motion is suddenly removed, there is generally a macro-
scopic recoil in which the motion may actually reverse itself before vanishing
at long times.

Further, of significance to many problems of bubble or droplet motion is
the material behavior in non-viscometric flows, particularly the so-called uni-

axial extensional deformations which are characterized by the elongational

viscosity. The elongational viscosity is found to increase with increase of )\ ;
and to also increase rapidly with deformation rate (in direct contrast to the

shear viscosity) even in very dilute po;ymeric solutions where the viscometric
behavior is indistinguishable from a Newtonian fluid. It has, in fact, some-
times been suggested that the elongational viscosity becomes effectively infinite
at some critical rate of elongation. Of course, such an effect cannot be observed
experimentally. What happens instead is that the local rate of extension in the
fluid is rapidly decreased most often by internal re-adjustment of the flow
patterns. An example is the well-known converging flow from a large tank into

a8 small channel.1 In that case, instead of following the wall contours, which
would produce some particular rate of extension for a given flow rate, the

fluid which enters the small channel is restricted upstream to a narrow conical
area, leaving a slowly recirculating toroidal eddy filling the region between

the walls and the cone. In this way the resulting fluid motion exhibits a much
reduced extension rate and correspondingly smaller stresses in the converging
region of the flow. This type of internal flow adjustment is characteristic of
uniaxial elongational motions due to the large variations in stress which

accompany a change in the rate of extension. i
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Finally, it is relevant to remark briefly on the existence of constitutive
models which incorporate the effects described above. 1In particular, one may
ask whether the possibility exists for realistic theoretical calculations of
bubble and drop motion in viscoelastic fluids. Unfortumately, the prospects
are not good at present. The dirfficulties are two-fold. First, and foremost,
is the lack of realistic constitutive models. Of the very large number of con-
stitutive relations which have been proposed, none has yet been tound to be
quantitatively satisfactory even for simple viscometric (shear) flows, where
extensive experimental data exists.z Furthermore, even if one is willing to
accept qualitatively correct viscometric behavior, there is no a priori reason
to expect equally good performance in nonviscometric flows such as those
associated with the motion of bubbles or drops, and no extensive rheological
studies of nonviscometric flows have yet been carried out. The second diffi-
culty with any theoretical analysis is due to the basic nonlinearity of visco-
elastic fluid behavior. 1In addition to the familiar non-linear inertia terms in
the equations of motion, there are additional nonlinearities associated with the
constitutive model. Only in the limit of dynamically and rheologically slow
flch do the equations become linear, and then the material is limited to nearly-
Newtonian behavior.

Thus, if we are to improve our knowledge and understanding of the motion
of drops or bubbles in a viscoelastic fluid, we must rely primarily upon experi-
mental evidence, coupled with a qualitative application of general rheological
principles rather than detailed theoretical analysis.

III. VISCOELASTIC CONTRIBUTIONS TO BUBBLE AND DROP DYNAMICS

A. Translation of Gas Bubbles through a Quiescent Fluid

The aspect of bubble and drop dynamics which has received the most attention
in the literature is the bhuoyancy driven motion through a quiescent fluid. 1In
addition to its fundamental importance, this problem is of considerable practical
interest in the chemical engineering literature because of its relationship to
residence-time and mass transfer rates in gas/liquid contact operatioms.

1. General Characteristics

In figure 1 we have plotted terminal velocity, U, as a funcFion of bubble

volume, V, for the typical case of a 1% solution of Separan AP30tin water. Also

shown are data for glass spheres of various volumes, and instantaneous values
-I.

Flows in which T >> A and UL/v << 1.
; Typical rheological data for this system may be found in references 2 and 1ll.
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of U versus V for a dissolving CO2 bubble. Finally, we have superposed a series

of photographs of the nondissolving bubbles, which are intended to illustrate
typical bubble shapes in a viscoelastic liquid. The first extensive investigation
of bubble shape seems to have been that of Philippoff,3 but subsequently a number
of investigators have reported relevant experimental observations. The present
photographs are from Zana.A In the Newtonian case the bubble is spherical for
small sizes, and is then deformed by the effects of fluid inertia through oblate
spheroidal shapes to the well-known spherical-cap at larger bubble volumes.
However, in the viscoelastic case the initial déformation is generally dominated
by elastic contributions which produce a prolate ellipsoid, followed by an inverted
tear-drop shape. As inertia effects increase, the prolate tear~drop is deformed
into an oblate spheroid with a trailing cusp and finally into a modified spherical-
cap. The terminal velocity data also show several distinct regimes. For the
smallest bubble sizes in which the effective Reynolds number is very small and
elastic effects modest, the data for the non-dissolving bubble is in essential
agreement with that for the rigid glass spheres. However, at r, ~v 0.29 cm, there
is an abrupt transition from this Stokes-like regime to a new regime which shows
essentially the same initial slope (dlog U/3dlog V), but in which the terminal velo-
cities are very considerably increased. Finally, there is a gradual transition
region where the bubble approaches a spherical-cap shape and (3log U/3log V)
approaches 1/6 after wall-corrections have been applied, as originally predicted
by Davies and Taylor5 for a Newtonian fluid.

A measure of the importance of fluid elasticity in an unsteady flow is the
largeness of the ratio of the intrinsic memory relaxation time A and the time
scale of change of the flow R/U in which R is the characteristic length scale of
the bubble in the direction of motion. This ratio, as well as the corresponding
Reynolds number is tabulated for the data of figure 1 in table 1 which is
appended to the figure. In the limit as bubble volume V+ 0 or V + «, it may be
shown that A/(R/U) + 0. However, clearly in the range r, = 0.15 to r, = 1.5 for
which we have data, the ratio of time scales is not small and elasticity should
have a noticeable influence, especially for the smaller sizes where it is not
moderated significantly by inertia.

For r, < 0.15, the slope (dlog U/dlog V) must approach the Newtonian creeping
flow value of 2/3 as bubble volume is decreased. However, in the range of figure 1,
the measured slope is greater than either the creeping flow value or the value
(1 + n)/3n, which is calculated using a power-law constitutive model.6 A compari-

son of the power-law parameter n obtained from measurements of viscosity in simple
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shear flow with that inferred from the measured slope (3log U/3log V) is shown

in table 2 for several Separan AP30/water/glycerine solutions. Since the power-
law model only includes purely-viscous effects, this comparison provides strong
evidence for the importance of the fluid elasticity in the motion of small
bubbles, at least for moderate polymer concentrations. A further indication of
significant elastic effects in the motion of small bubbles may be seen in the
prolate shapes of figure 1. We have noted previously that viscoelastic flows
often adopt a detailed pattern which minimizes the elastic component of the stress.
In motion of a rigid body, this can only be accomplished by increasing the length
of the region fore and aft in which the flow is significantly influenced by the
body. Such an effect is indeed obsetved7’8 in flow past rigid spheres and
cylinders. In the case of bubbles (or drops), a similar effect can also be
achieved by deformation of shape to an elongated (or prolate) form, and this fact
suggests one possible explanation of the prolate spheroidal and tear-drop shapes

which are actually observed.

The terminal velocity adopted at steady state is that value which gives an
exact balance between the rate of working by buoyancy forces, FU, and the rate of
energy dissipation in the fluid. The latter is effected by viscoelasticity in
two distinct ways6; first, through changes in the velocity field and, second, by
the elastic stress contribution to the dissipation rate. For large bubbles, in
which the inertia terms dominate both viscous and elastic terms in the equations
of motion, the velocity fields are essentially the same in Newtonian and non-
Newtonian fluids so that the main effect is through the dissipation mechanism.8
Although relatively minor, especially in the spherical-cap regime, experiments
in a series of increasingly viscoelastic £1u1d84 do show a systematic decrease
in terminal velocity at a fixed volume, implying, as expected intuitively, that
the elastic contribution to the rate of energy dissipation must be positive. Thus,
in general, the viscoelastic effects on "dissipation" and of changes in the velocity

field toward a smoother or elongated configuration are at least partially
cancelling in their influence on terminal velocity for a given volume. For
smaller bubbles, in which the inertia terms are negligible, the influence of
viscoelasticity on bubble motion may still be small if the flow is "visco-
elastically slow" in the sense R/U >> A. More frequently, viscoelasticity is
important for small bubbles (or drops) as evidenced in figure 1 and table 1.
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2. The Velocity Transition Phenomenon
Of all of the viscoelastic effects exhibited in figure 1, the most intriguing
and potentially important is the large and discontinuous transition in terminal

velocity at r, N 0.29 cm. The existence of such a transition was first reported
by Astarita and Apuzzo,9 who found a six-fold increase in bubble velocity at the
transition point for a 0.5% solution of the commercial J-100 polymer. Similar
results have more recently been reported by Calderbank, Johnson and Loudonlo'in
1% Polyox solutions and by Leal, Skoog and Acrivos11 in solutions of the commercial
coagulation polymer Separan AP30. A steep but not abrupt increase in velocity has
also been observed in the case of liquid drops moving through viscoelastic
11quids1?:13:14:15 14 £or gas bubbles which are dissolving' (see figure 1).
Kintner et al.15 proposed that the increase in velocity for drops is the
result of a transition in the conditions at the drop interface fromva no-slip
to a freely-circulating regime (equivalent to the well-known transition from the
Stokes to Hadamard regimes in Newtonian liquids) coupled with a change of shape
corresponding to a decrease in frontal area. In the case of gas bubbles, however,

9 showed experimentally that the frontal area actually

Astarita and Apuzzo
increased during the velocity transition. As a result, it was speculated that
the velocity increase was solely a result of the transition in surface conditions,
with viscoelasticity hypothesized as being responsible for the abruptness of the
transition. Further, it was implied that the magnitude of the velocity tramsition
could be largely accounted for by considering only the purely-viscous, shear
thinning viscosity, ignoring elastic and normal stress contributions.

A partial test of Astarita's proposal was reported several years ago by
Leal, Skoog and Acrivos.11 Careful experimental measurement showed that, a) the
bubble velocities for volumes less than the critical volume are precisely equal
to those measured for equal volume glass spheres provided suitable density
corrections are utilized; b) no terminal velocity transition nccurs for the

1.
The significance of this observation remains unclear to us at the present time.
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glass spheres. The relevant data are reproduced in figure 1. Hence, strong
indirect evidence was found to confirm the change in interfacial conditions as
the cause of the observed velocity transition. The effect of shear dependent
viscosity, in the absence of viscoelastic effects, was also studied by employ-
ing an empirical (curve~fit) purely-viscous fluid model to numerically calcu-
late the terminal velocities on non-circulating, partially circulating, and
fully circulating spherical bubbles at the measured critical volume. It was
found that the presence of shear-dependent viscosity alone could only account
for about 30F of the magnitude of the measured velocity transition. Hence, it
was surmised that better agreement between theory and observation could only be
achieved by taking account of viscoelastic effects in the fluid. Of perhaps
greater significance however was the subsequent conclusion, based on simple
qualitative arguments, that a relatively small additional yiscoelastic contribu-
tion to the force balance on the bubble would be sufficient to account for the
much larger measured velocity increases. The conditions required to produce a
congistent result are that the drag be reduced in both the pre-transition and
post-transition regimes, but with the effect being somewhat greater in the
latter case.

As an initial test of the viability of this proposal, it was desired to
determine whether elastic effects, in the absence of shear~dependent viscosity,
would contribute to the particle drag in a qualitatively consistent manner. In
order to investigate this question, Zana4 utilized "slow-flow'" asymptotic

solutions, based on the 6~constant Oldroydl6

fluid model, to compare the visco-
elastic contributions to the drag on a rigid no-slip sphere and on a freely
circulating spherical bubble. The rigid sphere result was taken from the solu-
tion of Leslie.17 The solution for the case of a spherical bubble was obtained
by Zana.4 An equivalent, independent solution for the stream—-function field
was published independently by Wagner and Slattery.18 However, Wagner and
Slattery's analysis appears to contain a number of algebraic and/or printing

errors. In the limit corresponding to a shear-independent viscosity, the drag

on a spherical bubble was found by Zana to be
2
Doubble = 2™ U,a{2 = 0.066(1 - @)(30 + a)e” + ...}

where n, is the viscosity, Ub the bubble velocity and a the bubble radius.

The parameter € is the ratio of the intrinsic relaxation time Al from the
Oldroyd model, to the convective time scale a/Ub and is assumed to be small in
accord with the "slow-flow" approximation. The parameter o is the ratio of
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retardation and relaxation times Azlkl and satisfies

2
Al

0<a <1

with the Newtonian limit being o = 1. The corresponding expression for the

drag on a rigid sphere 1317

D = Zﬂnouga{3 - 0.016(1 - 0)(3 - a)ez} .

sphere

Hence, comparing the two expressions, it may be seen that the purely elastic
contribution to the drag causes a decrease in both cases at 0(62), but that the
effect is much more pronounced for the bubble than for the rigid sphere. Thus,
the "slow flow" viscoelastic approximation offers strong preliminary evidence
to support the original hypothesis of Leal, Skoog and Acrivos.11

In addition, we have recently carried out an extensive flow visualization
study for gas bubbles in solutions of Separan AP30 in water and water/glycerine,
as an independent attempt to assess the importance of viscoelastic contributions
to the velocity transition phenomena. Centerplane streakline photographs were
obtained for bubbles which were slightly smaller and for bubbles which were
slightly larger than the transition volume. Also obtained were streamlines
for rigid particles, which were machined to the same shape as the bubbles, in
Sep AP30/water and in mineral oil (Newtonian) at the same nomiﬁal Reynolds
numbers. The main evidence of elaaticvinfluence was a somewhat stronger
upstream influence of the bubbles on the flow in the Sep AP30 solutions, as
compared with that for the geometrically similar rigid particles in mineral
oil. Significantly, the degree of upstream influence for the bubble also
appeared to be enhanced after transition, thus supporting the "requirement"”
of larger viscoelastic contributions in the post-transition regime.

B. Deformation and Break~up of Drops in Shear and Extensional Flows

A problem of considerable practical importance in the chemical processing
industry is the dispersion or emulsification of one liquid phase in another.
Insight into this highly complex phenomena may be obtained by studying the
deformation and break-up of a single liquid drop subjected either to shear or
extensional flow of an ambient fluid. When either the drop, or the suspending
fluid (or both) is non-Newtonian, experimental observation has shown that the

deformation and break-up processes can be fundamentally changed from the more
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familiar phenomena in a Newtonian system.

The theory of deformation and alignment of Newtonian drops subjected to
19

20

simple shearing motion of a second Newtonian fluid was initiated by Taylor
and taken to higher levels of approximation by Chaffey, Brenner and Mason,
and by Cox?l Here, we concentrate on the case of Newtonian or viscoelastic
drops in a non-Newtonian suspending fluid, where the deviations from predicted
Newtonian behavior are greatest.
1. Deformation

The majority of experiments have been reported for Newtonian drops sub-
jected to simple shearing motion of a non~Newtonian suspending fluid. When
the ambient fluid is putely—viscous,z4 the drop becomes increasingly deformed
with increase of shear-rate, but does so less rapidly than predicted by the
Newtonian theory. On the other hand, the droplet orientation for a given
degree of shape deformation appears qualitatively similar to the Newtonian case,
and for small degrees of deformation, the major axis of the drop is aligned at
45° to the flow. In contrast, the degree of alignment for a viscoelastic sus-
pending fluid22 is much greater, and shows an apparent small deformation limit
of only 29° from the flow direction. In addition, although the observed modes
of deformation are similar to the Newtonian and purely-viscous cases, it has

25 that the degree of deformation does not always

been shown experimentally
increase monotonically with shear-rate, but for small drops exhibits a maximum
at some intermediate value.

Relatively few studies have been carried out of bubble or droplet deforma-
tion in non-viscometric flow, other than the deformation in simple translation
which was described earlier. The only other work of which we are aware is the
Ph.D. thesis of W. K. Lee26 which is concerned in part with deformation and
breakup of viscoelastic drops in extensional flow fields of a Newtonian suspend-
ing fluid. The results of Lee show the deformation to be the same as for New—
tonlan drops with a viscosity equal to the zero shear viscosity of the non-
Newtonian fluid.

It is important to note that all of the studies referred to above were
carried out without any attempt to systematically vary or measure the inter-
facial properties between the drop and surrounding fluid. A recent experimental
study by Bartram27 provides one example which illustrates the danger in
generalizing such results. Bartram studied the deformation of a viscoelastic

1-

Experiments relevant to non-Newtonian drops in a Newtonian suspending fluid
have been reported by Gauthier, Goldsmith and Mason?2 and by Tavgag. 3
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fluid with zero or near zero interfacial tension and relatively large internal
viscosity. In this case the initially spherical drop first elongated in the
direction of the vorticity axis, then exhibited a simultaneous rocking motion
reminiscent of Jeffery orbits for a rigid spheroid in a Newtonian fluid,28
finally buckling and breaking up as the elongation was continued. This rather
astonishing mode of deformation (and break—-up) is quite unlike any of the
previous observations described above, and clearly emphasizes the difficulty of
analyzing experimental results when all of the relevant dimensional parameters

have not been determined or varied in a systematic fashion.

2. Break-up
The most comprehensive investigations of drop break-up in non-Newtonian

25 23,26

systems are due to Flumerfelt™  and his students. Results for simple
shear flow have been reported by Tavgacz3 for viscoelastic drops in Newtonian
fluids, and by F1umerfe1t25 and Tavga¢23 for Newtonian drops in a viscoelastic
suspending fluid. Dimensional analysis shows that the critical shear-rate for
break-up in a given viscoelastic fluid must depend on the internal to external
viscosity ratio, and on the relative magnitude of the relaxation time for the
fluid, A, compared to the time scale %:1 of the shearing motion. Availablel
experimental data for Newtonian systems has shown the critical shear rate for
break-up, ?c, to be unique for each fluid system. In contrast, however, the
extensive studies in viscoelastic fluids cited above all suggest that Yc increases
lfnearly with A&c for fixed and moderate values of the viscosity ratio and
AYC greater than 1. Thus, in non-dimensionalized form, it is found

[ﬂ_;_l_l]h v cl()&c) * e
wvhere n' and ¢ are the viscosity and interfacial tension, and D the equivalent
diameter of the drop. An extremely important and obvious implication of this
relationship is that break~up can occur for a given fluid system only if

o> (Me,

i.e. there exists a critical drop-size below which break-up cannot occur for
viscoelastic systems. This result is in sharp contrast with the Newtonian case
where, within certain limits of the viscosity ratio, drops of any size may be
broken by application of sufficiently high shear rates, and strongly suggests
the difficulty of achieving very fine dispersions in viscoelastic systems.
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Another result of considerable importance is the influence of tramsient

23 25

effects on drop break-up in viscoelastic systems. Both Tavgac ~ and Flumerfelt
used rapid start-up of simple shear flow as a test case. For fully Newtonian
systems, or for viscoelastic drops in a Newtonian fluid, the break-up under
transient conditions does not differ significantly from that observed in steady
flow. However, for Newtonian drops in a viscoelastic fluid, the critical
shear-rate for break-up is sharply decreased in the start-up flow relative to
its value in steady shear.

Finally, results similar to those of Flumerfelt and Tavgac were also
obtained by Lee?® for break-up in a uniaxial extensional flow. That is, for a
fixed and moderate value of the viscosity ratio, the critical extension rate
for break-up increases linearly as the time scale of the flow is decreased
relative to the relaxation time of the fluid. Thus, for a fixed fluid system,
break-up can occur only for drops larger than some critical volume.

In summary, we may note that the effect of viscoelasticity, in all cases,
is to increase the required flow-rate for break-up. For small drops, where
elastic effects are most significant, break-up is apparently prevented altogether
in a sufficiently viscoelastic fluid (large )\). These effects may possibly
reflect an increasing degree of "smoothing" of the disturbance flow as the fluid
motion adjusts, in the manner described earlier, to avoid large elastic stress
contributions. However, no detailed theoretical investigation of the break-up
phenomena has yet been attempted, and there is no experimental evidence avail-
able of the detailed velocity fields in the vicinity of a drop which could be
used to test this hypothesis. The decrease in critical shear-rate during a
start-up flow,is almost certainly a result of the characteristic large overshoot
of gtress which occurs under such circumstances (see section II) although again
no direct experimental or theoretical support exists for this assertion. In
view of the practical importance of dispersion processes, it is to be hoped
that further investigations will be carried out which will elucidate the
mechanisms of deformation and break-up in viscoelastic fluids.

c. Lateral Migration of Deformable Drops in Poiseuille and Couette Flows

The change in bulk flow properties which may be attributed to the suspended
drops of an emulsion depend critically on the concentration distribution in the
flow apparatus. It has been observed that drops in a Newtonian system tend to
migrate across the streamlines of a bulk (undisturbed) flow in such a manner as
to produce a cross-stream variation of droplet concentrations, even at very low

28

particle Reynolds numbers. In Poiseuille flow, migration is toward the tube
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centerline, while in Couette flow two-way migration occurs toward an equilibrium
position which is midway between the cylinders. In both cases, the phenomena
has been explained as resulting from deformation of the drop and its interaction
with the walls.

Mason and co-workers
altered significantly when the suspending fluid is non-Newtonian. Distinctly

24,29 have shown experimentally that the phenomenon are

different results are obtained depending upon whether the fluid is fully visco-
elastic or purely-viscous. In Couette flow,24 the equilibrium position is
moved closer to the inner cylinder for the purely-viscous case, but closer to
the outer cylinder for a viscoelastic fluid. In Poiseuille flow,29 drops in a
viscoelastic fluid migrate toward the tube axis as in the Newtonian case, but at
a much greater rate. Drops in a purely-viscous fluid, however, exhibit two-way
migration toward an equilibrium position which lies between the centerline and
tube wall.

Qualitatively, these results can be understood by considering Mason's further

24,29 These show migra-

experiments with rigid spheres in the same flow systems.
tion in the direction of lowest shear-rate when the ambient fluid is viscoelastic,
but migration in the opposite direction for a purely viscous suspending fluid.
Recently, Ho and Leal30 have obtained the former result analytically for a visco-
elastic fluid in the slow flow limit, and have shown that the major effect arises
because of induced normal stresses in the disturbance flow near the particle.
Qualitatively then, it would appear that the migration of deformable drops can
be accounted for by assuming a superposition of the migration effects due to
particle deformability with those due to the non-Newtonian rheology. Of course,
it is evident that this conceptual procedure takes no account of the coupled non-
Newtonian deformation effects, and a more definitive understanding of the phenomena
awaits further theoretical and experimental study.

D. Oscillations and Collapse of Gas Bubbles Due to Acoustic and Impulsive

Pressure Variations, and Due to Mass Transfer.

The variation of bubble volume with time due to pressure variations in the

ambient fluid, or to dissolution of the bubble by mass transfer is of both

practical and theoretical interest in connection with problems of flow-induced

(or acoustical) cavitation, and of gas-liquid contact mass-transfer operations.
Interestingly, however, with the exception of mass—transfer measurements for a

4,10 very little experimental information of relevance is

translating bubble,
available. Furthermore, unlike all of the previous examples, the motion induced

in the fluid by the changing bubble volume is a pure elongational deformation.
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Although this extensional motion is generally coupled with a buoyancy-driven
translation, we consider here the limiting case in which the characteristic
velocity of translation is small and neglected compared with the characteristic
radial velocity induced by the changing volume.

1. Pressure~induced Volume Variations

The motion of a void or an insoluble gas bubble induced by a sudden pressure
surge, or by application of acoustic pressure variations has been studied
theoretically by Fogler and Goddard31’32
tive model.

using a linear viscoelastic constitu-

In the absence of elastic effects, a void will generally collapse to zero
radius when subjected to a sudden pressure.surge, while an insoluble gas bubble
will generally always rebound short of actual collapse as a result of the sharp
increase in internal pressure. The response in a viscoelastic fluid depends
upon the magnitude of the intrinsic relaxation time of the fluid compared with
the classical Rayleigh collapse time for the bubble or void. When the relaxation
time exceeds the Rayleigh collapse time, the elastic response of the £fluid can
significantly retard the collapse of a void and produce a prolonged oscillatory
approach to the final collapse. Indeed, for A + « and viscosity u + 0, Fogler
and Goddard'531
an equilibrium radius, or complete collapse on the first cycle, depending on

analysis for a void shows either indefinite oscillation about

the magnitude of the imposed pressure increase. For finite u, the oscillation

is damped in time, while for finite A, the void ultimately collapses, but the
process ié delayed for several cycles with a final collapse time which depends on
A. In all cases, the period of oscillation 1s essentially the Rayleigh collapse
time for the system. Insoluble gas bubbles, in fluids with large A, decrease
from their initial radius to a new equilibrium radius via a similar oscillatory
cycle which shows an amplitude dependent both on the intrinsic relaxation time A
and the elastic modulus of the linear viscoelastic model.32 A minimum amplitude
of oscillation is found for values of A close to the Reyleigh collapse time.

In an oscillatory pressure field (such as that induced by acoustic waves),
the motion of a gas bubble is systematically damped by a decrease in the time
scale of oscillation relative to A, and with increase of the elastic modulus.

2. Bubble Collapse Due to Dissolution

The related problem of bubble collapse due to dissolution of the gas into

the surrounding liquid differs qualitatively from the pressure-~induced motions

which we have just discussed. Most important is the fact that the mass-~transfer

process which drives the collapse, and the collapse-induced fluid motion are
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intimately coupled. In a recent investigation, Zana and Leal33 have used an
Oldroyd—-type constitutive model16 to study the dynamics of bubble collapse by dis-
solution assuming that the bubble and the suspending fluid are initially
motionless. As in previous examples, it was found that the elasticity of the
fluid played a significant role only when the natural collapse time was comparable
to the intrinsic relaxation time A.

A plot of bubble radius as a function of time is shown in figure 2 for
three different values of A, It may be noted, first of all, that the curves
cross each other at a dimensionless time of approximately 0.4. Thus, an increase
in A actually produces an increased rate of bubble collapse during the initial
stages of the collapse process, but then acts to retard the bubble motion for the
remainder of the bubble's lifetime. The fluid flow induced by collapse of a
spherical stationary bubble is an unsteady uniaxial extension. Therefore, one
would expect the elastic influence on the collapse process to be a direct con-
sequence of its influence on the elongational viscosity N. We have noted earlier
that n is an increasing function of the rate of elongation for fixed A and steady
flow, and is also increasing for increasing A. Thus, one would expect the bubble
to collapse more slowly as A is increased, provided changes in the induced flow
occur sufficiently slowly. This is precisely what is observed for times t > 0.1.
Clearly, the enhanced collapse rate with increased A for t < 0.1 cannot be ex-
plained in terms of the increase in steady-state elongational viscosity. However,
it can be simply understood in a qualitative sense by considering the transients
associated with stres; growth. Recall that this is a start-up problem, i.e.
initially the bubble is stationary and there is no fluid motion. Therefore,
when the bubble boundary is set in motion at t = 0 by mass-transfer, there is
a transient period of stress growth with an approximate time scale of the order
of the intrinsic (stress) relaxation time, A. During this period, the instan-
taneous resistance to motion is less than it would be at steady-state in the
same fluid with the same elongation rate e and consequently the collapse rate
overshoots its corresponding steady-state value. Ultimately, as the stresses
build up, they too overshoot causing the elongation rate to decrease until it
finally approaches a slowly varying state in which the steady elongational vis-
cosity is effective in governing the collapse rate. We note that a similar over-

34 for

shoot of the rate of chéhge of cavity volume was also reported by Street
cavity growth in a viscoelastic liquid in spite of the fact that the fluid
dynamics of Street's problem is fundamentally different from the present collapse

problem—~the bubble growth induces a biaxial extensional flow, whereas the
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collapse produces a uniaxial extension.

Finally, it should be remarked that the stress—overshoot is closely related
to the oscillatory motion predicted by Fogler and Goddard32 in a cavity subjected
to a sudden pressure surge. A more detailed account of the work described here
may be found in Zana and Lea1,33 and in Zana."
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Table 1

Te N (R/U) Ure/v

0.15 0.36 1.8 x 1074

0.2 ‘ 0.55 7.5 x 1074

0.3- 0.85 7.8 x 1073

0.3+ 1.4 9.3 x 1072

0.4 2.0 0.43

0.5 2.2 1.3

0.6 2.1 3.6

0.7 2.4 4.6

0.8 1.9 5.9

1.0 2.3 5.7

1.5 2.1 7.8

2.0 1.9 8.3
Table 2

n(terminal velocity
Solution measurement) n(viscosity @ 0.5 sec-l)

0.523% AP30 ~ 45.6% water 0.26 * 0.02 0.45 % 0.05

- 53.92 glycerine
17 AP30 - water 0.48 £ 0.02 0.68 + 0.07
0.52 AP30 - water 0.72 + 0.05 0.77 * 0.11

0.1Z AP30 - water 0.80 + 0.10 0.85

"+

0.14
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ABSTRACT

An experimental study of the deformation and breakup of water droplets
induced by weak shock waves was conducted in a horizontal shock tube.
Droplets with diameters between 350 pm to 750 pm were allowed to fall through
the tube and were exposed to the lateral flow created by a shock wave. The
shock strengths chosen resulted in droplet deformation leading to either
oscillation or breakup. The droplet deformation and breakup were recorded
using high speed photographic techniques capable of interframe times as short
as 10 ps.

The Weber number range studied was between 2 and 8. In this range
breakup occurred by the ""bag' type mode. The deformation leading to this
type of breakup was studied in detail and the process was divided into four
stages. Each stage is described in terms of the physical changes of the shape
of the droplet and a description of the flow causing the deformation is presented.
The deformation leading to breakup was compared to the deformation leading
to oscillation. The comparison of the two types of deformation resulted in the
establishment of a breakup criteria based on a critical droplet thickness,
where the critical thickness is defined as the deformed droplet width which,
when measured, can predict if a droplet will either break up or oscillate.

A simple model was developed which predicts the lowest velocity that
will cause a droplet to break up. The model was based on the experimentally
observed critical thickness. The critical velocities predicted by the model
were found to be within the experimental accuracy of existing data.

Introduction

In physical processes droplets are frequently subjected to a suddenly
imposed flow field which has been initiated by the passage of a shock front.
The manner in which the droplets respond to the dynamic forces of the flow
field is often of importance to the process involved. For example, in a
combustor the response of the fuel droplets to the detonation shock is of
importance.! If droplet breakup occurs, better fuel atomization is achieved
and higher combustion efficiencies are realized. When a space vehicle
traveling at supersonic speeds enters a cloud the impaction of droplets on
the nose cone can severely damage the vehicle.2» 3However, when the droplets
enter the region behind the bow shock, breakup is possible and damage can
be avoided. In a cloud, if a large droplet is shattered by a thunderclap it will
produce several micron sized droplets which may result in an increased rate
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of coalesence in the cloud. The above examples point to the need of understanding
the mechanism of droplet breakup. By understanding what causes the breakup

of a droplet, it may be possible to accurately model breakup and to predict

when it will occur. To understand this phenomena it is necessary to conduct
experimental studies which yield an accurate time history of deformation

leading to either oscillation or breakup.

The type of response exhibited by a droplet when acted upon by an
imposed flow field depends on the ratio of the dynamic forces trying to deform
the surface to the surface tension force which resists deformation from a
spherical shape. The ratio of these two forces is defined as the Weber number,
We = py UoZ2 R/, and is used to characterize the droplet response to a flow
field. in the above expression, pj is the fluid density, Uo the flow velocity,

R the droplet radius, and ¢ the surface tension. When We is small, of the
order of 0.1 or less, the droplet will remain spherical. For Weber numbers
above 0.1, but below a critical value, the droplet oscillates. The upper value
for this range is called the critical Weber number, We., and defines the

upper limit for which droplet breakup will not occur. Above this Weber number,
the droplet will breakup, first by the '"bag" type of breakup and then, as the
Weber number increases, by the shattering type of breakup.

Droplet breakup has been studied previously with the objective of
predicting the critical velocity for breakup, predicting breakup time, or
determining the mechanism of droplet shattering. Lane, 4 and Hanson, Domich,
and Adams- have studied breakup and presented experimental correlations for
the lowest critical breakup velocity around a-droplet. The lowest critical
breakup velocity is that which causes the "bag'' type mode of breakup. The
breakup velocities, U., for droplets of the same liquid are represented by the
relationship UCZD = constant in which D is the droplet diameter. The results
of the two studies differ, with Lane obtaining consistently lower critical
velocities than those found by Hanson, et al. The reason for this discrepancy
will be discussed later.

Various studies of droplet shattering have been conducted. Til.ylor6
studied the breakup of droplets due to shock waves and the breakup of droplets
accelerating in a uniform flow field.

Engel7 studied the response of droplets to a flow, where the Weber
number was sufficiently high to shatter the droplet. Engel described the
change in shape of a droplet as it shattered and divided the changes into stages.
Engel found that the droplets flatten, then reach a plateau where the flattening
ceases and then the droplet shatters. The plateau is attributed to surface
tension acting against further flattening.

Simpkins and Bales8 examined the droplet breakup for various Weber
numbers. For 7 < We < 50 they found droplet breakup occurred by the "bag"
type mode. At higher Weber numbers droplet shattering occurred. Shattering
was attributed to Taylor instabilities growing along the droplet surface rather
than boundary layer stripping.

Waldman, Reinecke, and Glen9 studied droplet shattering by means of
x-ray photography. In this manner, they could see inside the droplet mist
and determine when the droplet had disintegrated. From these experiments
they obtained a droplet breakup time for various Weber numbers,
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Analysis of droplet breakup and deformation have also been made.
Hinzel0 developed a linear model based on the dynamic pressure exceeding
the surface tension at the stagnation point by a factor, determined experimentally.
His model allows only small variations from the spherical droplet shape.
Gordonll developed a model to predict breakup time for a droplet breaking in
the ""bag' type mode. From this model he predicts a droplet diameter for a 12
given velocity, below which breakup will not occur. Harper, Gruber and Chang
have developed a theory based on perturbation methods. Their model predicts
that for high Weber number situations the droplet surface is susceptible to
instabilities. When the growth rate of the instabilities is much faster than the
aerodynamic deformation the instabilities cause the droplet to shatter. The
instabilities are assumed to be Taylor inatabilities. The agreement, between
the theories and experiment in all the above studies is, however, not good.

From previous work, it can be seen that detailed information concerning
the mechanisms of the ''bag" type breakup is lacking. No studies of the change
of the droplet shape similar to that of Engel, for shattering, have been made.
Furthermore, the critical point, when it is certain that a droplet will breakup,
has not been determined. The objective of this study was to characterize
droplet deformation leading to breakup and to establish the necessary shape
condition to determine if a droplet will oscillate or breakup. Based on this
criterion, a simple model was developed which appears to correctly predict
the critical velocity for breakup.

Experiment
(i) Apparatus

A shock tube was used to create the desired uniform flow conditions.
The tube was constructed of seamless aluminum tubing having an inside
diameter of 6.35 cm. The shock tube consisted of four sections: a 183 cm
driver section; a 170 cm section located upstream of the test section; a 35.6 cm
interchangeable test section; and a 173 ¢m section downstream of the test
section. The test section had a viewing port and light window to permit direct
light illumination located 180° apart. Both the viewing port and the light window
were covered with thin glass. The test section was designed to permit a stream
of droplets to fall unimpeded through the center of the test section. The shock
tube was supported by means of steel rails and rigidly held in place by U-bolts.
The mounting system assured accurate alignment of the shock tube and a
minimum transfer of vibration along the tube wall. The shock tube is shown
schematically in Figure 1.

The diaphragms used to create the shock waves were of 0.019 mm thick
cellophane. The cellophane was supplied by FMC Corporation, American
Viscose Division. The diaphragm was held between two concentric circular
pieces of aluminum which could then be fitted over the shock tube. The holder
caused the cellophane to be stretched uniformly resulting in uniform rupture
of the diaphragm even at pressure differences as low as 1.25 psia. The
diaphragm was ruptured by a needle located in the driven section of the shock
tube. Positioning of the needle in the low pressure side eliminated the problem
involved in sealing the opening for the needle.

The shock propagation velocity was measured by two time-of-arrival
pressure transducers and associated electronic equipment shown schematically
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in Figure 1. The transducers, Atlantic Research type LD-15, were located at
equal distances upstream and downstream of the test section and were separated
by a distance of 74.4 cm. The pulse produced by each transducer was amplified
by a Hewlett Packard type 465 A amplifier. The amplified signals were then fed
into the start and stop gates of a Hewlett Packard 550 MHz Timer/Counter Model
# 5327A where the time interval between the two transducers was recorded to an
accuracy of # 1 us. The rise time of each transducer was 1 us assuring accurate
triggering of the timer upon the arrival of the shock front at each transducer.

The droplets were produced in a continuous uniform stream by means
of an oscillating capillary device. Jet perturbation was achieved by means of
flow oscillation. Suitable flow perturbation was achieved by means of an
immersible pump powered by an audio oscillator. The pump (Edmund Scientific
Company, Catalog # 60,307) was driven by a Hewlett Packard Audio Oscillator
Model #200AB. The droplets were uniform in size, equally spaced, and had
a velocity component only in the vertical direction.

The liquid jet was produced by forcing the liquid through a capillary tube
with compressed air. The droplet diameters produced ranged between 350 um
to 750 pm for water. The driving pressure for all jets was that necessary to
produce an approximately 1.5 cm long laminar portion in an undisturbed jet.

(ii) Photography

In order to study deformation, a series of backlighted pictures taken
at 10 ps intervals were needed so that an almost continuous history of the change
of the droplet shape could be obtained. This time interval corresponds to a
framing rate of 105 pictures per second if a high speed cinephotographic technique
was used, This rate far exceeded the speeds attainable with equipment available
to us. An alternate approach was to take a single picture per test by means of
a continuous delay single flash system. If the shock strengths were identical
and droplet diameter the same then an equivalent framing rate of 105 fps could
be achieved. A schematic of the system is shown in Figure 1.

A General Radio type 1541 Multiflash Generator functions as a continuous
delay unit when it is used to produce a single flash. The unit is capable of
producing a single flash after a preset time delay which can be controlled by
means of the flash interval control. The delay after the initial triggering can
vary from 10 ps to 1.6 seconds in steps of approximately 5 ps or larger. With
this unit providing both the delay system and flash triggering system, the proper
time interval for each deformation picture was conveniently obtained. The
illumination for the pictures was supplied by a General Radio Strobotac type
1538A. Flash duration was 0.8 ps measured at 1/3 peak intensity. The short
flash duration minimized blurring for each picture.

The multiflash unit was triggered by the amplified pulse of a pressure
transducer located 0.6 cm upstream of the initial droplet position. The transducer
signal was amplified by Hewlett Packard Type 465A amplifier. The amplified
transducer pulse represented an approximately 30 us delay after the shock front
reached the droplet. The value of the flash delay was recorded by means of a
Hewlett Packard Timer-Counter Model # 5327A. The delay was measured from
the time of arrival of the shock front at the pressure transducer to the time when
the stroboscope received its triggering pulse. The time interval was measured
to within £ 1 ps of the actual delay.
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Results and Discussion

Observations were made of the response of droplets to various strength
shocks. The droplets studied were both breaking and oscillating drops. Of
principal concern in this study was the change in shape of the droplets due to
the shock-induced flow field. Therefore, the droplets were studied independent
of displacement. Several series of pictures were obtained for various com-
binations of droplet diameter and shock-induced flow velocity. A typical series
of deformation pictures for a breaking droplet are shown in Figures 2-4. The
droplet shapes in these pictures are assumed to be axisymmetric because of
the nearly axisymmetric flow field about each droplet. The following measurements
and discussions refer to a meridian plane of the droplet.

The negatives for each series of pictures were examined with an optical
comparator using a 10X magnification. In this manner, the change of shape of
a droplet from that of a sphere could be measured. The front and rear of the
droplet did not deform in a similar way. However, for uniformity, measurements
were made of the deformed droplet height, a, and the deformed droplet width,
b. Some results of the deformation measurements are shown in Figure 5. In
these figures the droplet height, a, normalized with the diameter, D, is plotted
versus real time for several series of pictures.

From examination of the deformation pictures and from the results of
the measurements, it was possible to arrive at some conclusions about droplet
deformation particularly, deformation leading to ''bag' type breakup. With the
understanding obtained from the deformation curves, it was possible to examine
the deformation pictures and to establish four stages of breakup as well as a
breakup criteria.

Each set of curves presented in Figure 5 represent the deformation of
equally sized droplets subjected to various flow velocities. It is seen in Figure
5 that when U, = 2640 cm/sec, the 710 pm diameter droplets do not breakup,
but begin to oscillate. This curve will be discussed later; the concern of this
discussion is the deformation leading to '"bag' type breakup.

As a general description, one can simply say a droplet flattens, becomes
hollow, and then bags outward. This would, however, oversimplify droplet
breakup. From examination of various series of droplet breakup pictures, it
was possible to describe breakup in a more accurate manner. Droplet breakup
was divided into four stages, and each stage was described in physical terms.
The end of the fourth stage was reached when the bag, formed by the droplet,
was broken. The time, after the passage of the shock wave, for the droplet
to reach this point is defined as the breakup time. The four stages of breakup
are described below. In all cases, the flow is from left to right. The flow is
the result of the passage of a shock wave and is, therefore, similar to the flow
about a sphere set impulsively into uniform motion. Dennis and Walker13 and
others have shown that separation occurs almost immediately after the start of
impulsive motion. All of our photographic observations were made at times
when the flow had already become separated about the back of the droplets.

Stage 1 is characterized by the immediate flattening of the rear of the
drop as in Figure 2 whent = 54 ps. The flat portion continues to grow until it
reaches approximately one half of the initial droplet diameter., While the back
of the drop is flattening, the front surface remains spherical. However, its



452

!854/1.5 g=|o|y_s

° 5

12154 s t=201 uS

t=23) 1S t =298 1S

Figure 2,
Droplet Deformation Leading to
Breakup t = 54us to t = 298ys



453

=348 LS t=395 uS
] )
' '
t=445 LS t=491 LS

| t=595 1S t=643[LS

Fiaure 3,
Droplet Deformation Leading to
Breakup t = 34us to t = 643us



454

)

12835 LS t=1027 1S

t=1158 LS t=1263 LS

‘u

Ki i

4 ¢

’ :

j f
121468 LS t=1565 /LS

Figure 4.
Droplet Deformation Leading to
Breakup t = 835us to t = 1565us




O|e

3.0

2.5

2.0

455

- D=.07lcm
a U°=3720 cm/sec
_e U,=3i20 cm/sec

D U°=2640 cm/sec

00 02 04 06 08 1O L2 14

3.0
2.5

2.0

D=.047cm
s U°= 3720 cm/sec

0U°=3|20 cm/sec
] 1 { 1 | 1 M |
0.0 02 04 06 08 O 1.2 .4
t(ms)
Figure 5.

Droplet Deformatien Curves



456

radius of curvature increases. The end of this stage is reached when the sides
of the droplet become straight. Stage 1 lasts approximately 10 % of the total
breakup time. The overall effect of this stage is a general flattening of the
droplet.

During Stage 1, the shock-induced flow cannot follow the droplet shape
and separates from the droplet. The separated flow region is a low pressure
region at the rear of the droplet and the flow velocity in this region is principally
in the opposite direction of the main flow. However, the shock wave initially
imparts an acceleration of about 108 cm/sec? to the droplet. The acceleration
is opposed by the droplet mass which results in a pressure gradient in the
droplet with the highest pressure in the front. The pressure at the rear of the
droplet approximately equals the pressure in the separation region. To adjust
to this situation, the liquid at the separation region must have an infinite radius
of curvature or, it becomes flat. As time progresses, the flat portion grows
upward from the rear stagnation point. The flattening of the drop is principally
controlled by surface tension forces while the sole effect of the dynamic force
is to increase the radius of curvature of the front surface.

The onset of the second stage of deformation is characterized by the
appearance of a ridge at the top of the front surface, separating the front from
the sides. The ridge continues to grow in height and as it grows it has the
effect of increasing the radius of curvature of the front surface. As the ridge of
the droplet becomes higher, the front surface becomes flat except for a small
spherical region about the stagnation point. While the front surface is changing
shape, the rear portion of the droplet loses its flatness and gives the appearance
of being drawn toward the front surface. At the end of this stage, the rear portion
of the droplet becomes flat over its entire height. The end of Stage 2 of the
deformation process occurs when the droplet appears to have deformed by being
"squeezed' symmetrically by the flow field. Stage 2 lasts approximately 20%
of the total breakup time. The overall effect of Stage 2 is to flatten the droplet
to its minimum thickness. This stage corresponds to t = 154 pm to t = 395 us

in Figures 2 and 3.

In the second deformation stage, the droplet is more directly reacting
to the flow field about the droplet than during the first stage. During this stage,
the recirculating flow behind the droplet begins to bring mass from the back of
the drop towards the front. At the same time, the flow about the front surface
brings mass to the top and bottom of the front causing the front surface to assume
a larger radius of curvature. This movement of mass from the front and rear
of the droplet causes the ridge to form and to grow in height. As the ridge
continues to grow, the recirculated flow possesses a larger velocity component
in the negative x direction than the velocity in the positive x direction possessed
by the incoming flow which is moving almost vertically along the front surface.
This flow situation causes the ridge to be pushed into the direction of the flow
resulting in the front surface becoming flat except for a spherical region about
the stagnation point. Finally, the ridge is forced forward, and the front of the
droplet appears flat.

Stage 3 corresponds to the flat portion of the curve in Figure 5. During
this stage of deformation, the droplet goes through no noticeable external
changes, all changes are internal. In this stage, the droplet appears to have
a flat front. This results from the ridge formed during Stage 2 being forced
forward. During this stage the region around the spher.cal portion of the droplet
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becomes deeper and a greater percentage of the droplet mass becomes located
at the spherical area about the stagnation point and at the edge of the flattened
droplet. At the end of this stage, the rear surface of the droplet begins to
move outward. Stage 3 represents approximately 12%to 15% of the droplet
breakup time. The overall effect of Stage 3 is to transform an almost disk-like
droplet into a hollow bowl with a hemispherical lump of mass located at the
center.

The third stage of deformation is a stage of internal deformation of the
droplet. Once the flow causes the ridge to be pushed out past the front surface
it becomes inevitable from observation that the droplet will ultimately breakup.
When the external flow approaches the spherical region at the stagnation point,
the flow moves around the sphere and is then deflected upward by the solid
rear surface. The flow, however, cannot move around the droplet rim formed
from the ridge and must bend into the direction of U,. This results in a circular
flow region between the center sphere of mass and the rim of the droplet. The
circular flow pattern scours mass from the back internal surface of the droplet
until the back surface becomes so weak it begins to move in the direction of U,.
The dynamic force then causes the onset of bagging.

Stage 4 is the bagging deformation stage of the drop. This stage begins
when the rear surface of the droplet moves in the direction of U,. The initial
movement of the rear surface gives the drop a lenticular shape with the flat
portion facing the flow. The rear of the droplet quickly moves outward giving
the droplet the appearance of a bag with a heavy rim. In the center of the bag
a stem may appear. The stem is the result of the mass at the center of the
drop being so large that it cannot move at the same speed as the bag. As the
bag moves outward, the mass is stretched giving the appearance of a stem.
Droplet rupture occurs on the bag surface, breaking it into small droplets
which are swept along with the flow. The stem and rim breakup into droplets
at a later time. Stage 4 represents approximately 50 % of the total breakup
time.

In Stage 4, the rear surface of the droplet has become weakened in the
region about the spherical mass at the stagnation point. The aerodynamic force
causes the rear region to move in the direction of flow while the heavy rim
remains relatively still. As the rear of the drop is forced outward, the rear
surface becomes weaker and as a result the bag moves faster and becomes
stretched. The bag surface when stretched becomes susceptible to instabilities
and breaks. The rim and stem are also broken by flow induced instabilities
at a time after breakup.

The four stages discussed above describe droplet deformation leading
to '"bag" type breakup. By comparing the deformation of a breaking droplet
to the deformation leading to droplet oscillation, it was possible to establish
a criteria to determine if breakup occurs. The deformation of an oscillating
droplet is shown in Figure 5 and corresponds to Uy = 2640 crn/sec. This
particular oscillating droplet is subjected to a flow velocity approximately
corresponding to the critical velocity for a 710 pm droplet. Oscillating droplets
were found to deform in a manner similar to that described for a breaking
droplet in Stage 1 and 2. However, once the droplet reaches its minimum
thickness, b, corresponding to the maximum value of a/D, it rebounds and
approaches a spherical shape, then overshoots this shape until it reaches a
minimum value of a/D. The droplet then oscillates about its original spherical
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shape. From our observations on both types of deformation, it was shown
that the minimum thickness, b, of the droplet is the first clearly noticeable
difference between a breaking and oscillating droplet and can, therefore, be
used as the basis of a breakup criterion.

In Figure 5, the oscillating droplet reaches a maximum value of a/D
equal to 1. 6. This corresponds to a droplet subjected to a flow velocity just
below the critical velocity. For the breaking droplets represented in Figure
5, the droplet thickness, b, corresponding to the flat portion of the curve, is
less than the value corresponding to b for the oscillating droplet. In Figure 5,
the curve corresponding to Uy = 3120 cm/sec for the 470 pm droplet represents
a droplet subjected to a flow velocity just above the critical velocity. From
this curve, it is seen that the minimum thickness of the droplet, corresponding
to the flat portion of the curve, is a/D equal to 1. 6. It was, therefore, determined
that if a water droplet attains a thickness corresponding to a height to diameter
ratio of about 1.6 or greater, the droplet will breakup. Using this criteria,
it would not be necessary to follow droplet deformation through to breakup
rather the value of a/D reached in the second stage of deformation can be used
to determine if breakup occurs. The concept of a critical droplet thickness
corresponding a/D was used to develop a model that can predict breakup for a
droplet of a given liquid. This model is presented in the next section.

Breakup Model

When a droplet is deformed by a uniform flow field, caused by a shock
wave, the front and rear deformation is not symmetric. However, when a
bursting or oscillating droplet is deformed, it reaches a stage of deformation
when the droplet appears to have been symmetrically deformed. At this stage,
a nonbursting droplet will start to regain its spherical shape due to surface
tension, while the front surface of the bursting droplet will continue inward and
eventually the droplet will breakup by the '"bag' type mode. By studying droplets
of a given liquid both above and below the critical value of velocity for breakup
for various droplet diameters a critical thickness can be determined for the
droplet. If the droplet is compressed to a smaller thickness than the critical
thickness it will breakup, but if it has a larger thickness it will oscillate.
Therefore, by artificially ""squeezing' a droplet to the critical thickness and
at a time t = 0 imposing a uniform flow over the droplet we can, by examining
forces on the fluid at the stagnation point of the droplet, determine whether the
flow velocity is sufficient to cause breakup. If the flow velocity is less than
the critical velocity, the surface tension force will push the front surface outward.
If the flow velocity is greater than the critical velocity, the flow will push the
front surface inward, and this would imply the droplet will breakup.

The model congiders a droplet in a uniform flow field that has been
deformed from its spherical shape. The droplet is assumed to have been
deformed as an oblate spheroid with the axis of symmetry parallel to the flow.

A cross section of the model is shown in Figure 6. The distance Ro§ is the
amount of squeeze imparted to the droplet initially. By examining an element

of fluid at the stagnation point and determining its motion due to the forces acting
on the element a critical velocity for breakup is determined.

Consider the fluid in the vicinity of the forward stagnation point. It is
assumed that some of the fluid will move as a solid body in response to the
applied forces. It is further assumed that the pressure in the drop, acting on
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surface 2 (see Figure 6) is the order of the internal pressure of a spherical
droplet at rest, or -
_ 20
F’z = P+t Ro , 1
where P2 = the internal pressure of the droplet.

The external pressure distribution on the front surface is equal to that
about a sphere of radius, R. By limiting the surface of interest to an infinitesimal
height about the stagnation point the external pressure simplifies to

= L 2
P,=P_ +3p,U", 2
where Ug is the free stream velocity and p, is the density of the gas. With
the result of Equation 2, the pressure on the external surface 1 is given by
- 20

Pr=Petr

3 2
where Rl =R° / B

Making use of Equation 2 we find the pressure difference on our infinitesimal
element about the stagnation point to be

- - 2.,2¢0 B -
AP-pl-PP_-épluo r5 [ 1 3
o Ro

Equation 3 gives the pressure difference on the element in the X-direction.
The pressure acting on the element in the Y-direction is considered to be zero,
since the height of the element is considered to remain constant.

Integration of the equation of motion of a fluid in a particle fixed coordinate
system in the X-direction yields

2
p, Sl v =-aap- 4 2d y 4
2 G 15

where V = ABc, is the volume of fluid assumed to move as a solid body, A is

the surface area and Bc is its length. The other quantities appearing in
Equation4 are B=R (1+ £), U =dB/dt = velocity of volumetric element of
fluid and Ry ¢ = changoe of distance from the center of droplet to the front surface
due to deformation. Substitution into Equation 4 gives

2 2
dzg__%”l Yy Y [(1+8)% -1 9% L
2 © ‘—__)p 2 3 T 3 K.
at 2] cr?u+e) cr e, | PR,

In Equation 5, the experimental results obtained by Simpkins and Bales8 and the
present study are used, which indicates that initially the particle displacement
can be approximated by

_ 2.2
X,=KU“t°/R,

where K= 10-4.
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Equation 5 can be solved numerically by means of a fourth-order
Runga-Kutta formula modified by Gill. The equation carries one constant, C,
which must be evaluated by other means. If Equation 5 is solved for the case
of a stationary drop, by making U, equal to zero, and the resulting equation
linearized it is found that
dzg _ 40

2 7 3 | & 6
dt CRo Py
This equation represents the harmonic vibrations for the drop. If C = .5 the
circular frequency equals that of the frequency of the lowest mode of vibration
of a spherical droplet.

An examination of the effect of the constant C in the solution of equation
6 showed that it principally effected the period of oscillation of the drop, not
the amplitude of oscillation which change by less than 5% when C was varied
from . 125 to . 75. The value of C = .5 was therefore adopted so that the model
represents the vibration of a drop when Ug goes to zero. Equation 5 can now
be solved once the initial conditions are established.

Our model, as stated previously, is based on a critical value of £. This
initial value we shall call £.. As stated when time t = 0 the droplet has the
thickness £ = £, and as the velocity field is imposed the front surface will respond
accordingly. When the velocity is equal to the critical velocity the front surface
does not move therefore the slope at this point, £', is equal to zero. To further
restrict the zero slope criteria we impose the condition that £' remains zero or

£'"' = 0. Applying this second condition to equation 5 and combining terms
equation 5 becomes 2
U 2 . .20 (1+ gc) -1 7
¢ R, fp + (146K

where U. and £, are the critical velocities and displacements. Examination of the
denominator in Equation 7 shows the second term to be approximately an order

of magnitude smaller than the first term and is neglected. Equation 7 can then

be transformed into

u iD= 6] - e 8

where €. must always be negative.

Equation 8 can be used to determine the critical velocities for droplets
of different fluids, if £, is known. Our experiments have shown that §; is the
same for a wide range of diameters of droplets if the fluid is the same. The
time to reach this value will be different owing to the change in period due to
the change in size but the value reached will be the same. The critical thickness
need only be found once for each fluid under consideration. .

In our experiments the critical value of I&cl was found to be .56. Sub-
stitution into equation 8 yields

UCZ D= 3.92x 10°
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for a water drop in air. The units of U; and D are in the cgs system. This
equation is plotted in Figure 7. Along with this curve are some experimental
points obtained by Lane and Hanson et al. It can be seen that the curve fits the
data points as well as the experimental relationships determined in the above
studies.

By using the value of £, for water and applying it to alcohol, Equation 8
will yield the curve plotted in Figure 7. Also shown there are the experimental
data of Lane and Hanson 2 et al. .

Examination of Figure 7 shows that our curves more closely approximate
the data found by Lane 4 . This discrepancy may be related to the manner
Hanson et al 5 supported their drops. The drops were supported by acoustic
radiation pressure which was never turned off. The ratio of the acoustic radiation
pressure to the dynamic pressure is of the order 10-2 14, The acoustic
pressure can therefore, not be ignored when examining the pressure at the edges
of the droplet. This could have resulted in an additional cohesive force on the
drop which then required a larger velocity to cause droplet breakup.

Conclusions

Observations of the deformation of oscillating and breaking droplets
caused by the flow field associated with a shock wave are summarized below.

1. The deformation leading to breakup by the ''bag' type mode of
breakup can be divided into four basic stages of deformation: Stage 1, surface
tension controls the droplet shape; Stage 2, the flow around the droplet causes
it to change shape eventually giving the droplet the appearance of being ''squeezed"';
Stage 3, the droplet goes through internal changes which cause it to become
hollow; Stage 4, the flow pushes the rear of the hollowed droplet outward causing
it to form a bag and then burst.

2. An oscillating and a breaking droplet will be initially deformed in a
similar manner. However, the breaking droplet will be compressed to a greater
extent. This observation leads to a breakup criterion based on a critical value
of a/D which can be related to a critical droplet thickness, b.

3. Using the critical thickness as a criterion for breakup, a model was
developed which predicts the critical breakup velocity for any given droplet,
The critical thicknezss found for water was substituted into the model and predicted
the relationship U.“D = 3.92 x 10° for water. Using the same critical thickness
for alcohol droplets the model predicts UCZD = 1.2 x 105, Both expressions
agree closely with existing experimental data.
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THE ROLE OF DROP DYNAMICS IN THE

PHYSICS OF CLOUDS AND RAIN

Morris Neiburger, In Young Lee, Elena Lobl, and Lawrence Rodriguez, Jr.
Department of Meteorology, University of California, Los Angeles

Abstract

Condensation from water vapor onto nuclei in rising air
produces clouds of numerous small drops having very small ter-
minal velocities. One of the ways these small drops may grow
to raindrop size is by collision and coalescence. Both theo-
retical computations and laboratory experiments show that the
radii of uncharged drops must exceed 20 um before they are ef-
fective collectors.

The methods of computation of collision efficiencies are
discussed and the results compared with the results of exper-
iments to evaluate the collection efficiencies of cloud drops
with and without electric charges. The way these data enter
into studies of the formation of rain is discussed.

QUALITATIVE DESCRIPTION OF PRECIPITATION PROCESSES

Broadly, the processes of formation of clouds and precipitation may be
divided into the dynamic processes, concerned with the motions of air cur-
rents which give rise to the general conditions for the formation of clouds
and precipitation, and the microphysical processes, concermed with the growth
of the individual precipitation particles from gas phase by condensation and
from smaller cloud particles by collision and coalescence. There 1is, of
course, a strong interaction between the two kinds of processes. The upward
motions determine the rate of cooling due to expansion and thus control the
rate at which the microphysical processes go on. The release of latent heat
in condensation and the drag of the particles formed affect the buoyant forces
which determine the upward motion. While the dynamic processes are prerequi-
site to the microphysical ones, it 1s convenient to discuss the processes of
particle growth first, and subsequently to turn to the larger scale setting
in which 1t occurs.

It is a fact of common experience that clouds can remain in the sky for
long periods without precipitating. Since clouds consist of water particles,
liquid or solid, which are heavier than air, this phenomenon requires expla-
nation. Usually it is that the particles are being sustained by the upward
moving current of air that is causing the cloud to form. Sometimes the up~
ward speed is not sufficient but the particles evaporate as they fall from
the cloud base into unsaturated air and vanish into vapor in a short distance.

Measurements show that the radii of drops in nonprecipitating liquid
clouds are in the range 2 to 20 um with the modal radius usually between 5
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and 10 um. These drops have terminal velocities ranging from 0.05 to 5 cm

s !, so that very slight upward flow of air would be required to offset their
falling. Further, it has been shown that if drops of these sizes fall out of
a cloud into air with 90 per cent relative humidity they evaporate before
they go as much as one meter.

Rain drops, on the other hand, range in radii from 0.1 mm to 3 mm, with
terminal velocities from 70 cm s * to 9m s ., If the updrafts are not
stronger drops this size will fall relative to ascending air and may reach
the ground before evaporating, even when low humidities prevail below the
clouds.

The key difference between cloud and precipitation is thus the particle
size, and the central question in precipitation physics concerns the condi-
tions under which the particles can grow to precipitation size.

The process of condensation by itself can be shown to be much too slow
to explain the rates at which precipitation forms. For instance, the develop-
ment from clear air to showers in the course of a summer day may occur in a
matter of an hour or less. While condensation results in very rapid growth
of drops to the size of average cloud drops, say 10 microns, continued growth
is progressively slower, and with the number of drops which form there is not
enough water vapor available for millimeter drops to be produced by condensa~
tion alone.

The two ways that cloud particles can grow rapidly to precipitation are
(1) by collision and coalescence, and (2) by the three phase, or Bergeron
process. The nature of the first process is obvious: 1f the cloud drops are

. not of uniform size the larger ones will fall relative to the smaller and

tend. to overtake and capture them. After collecting one small drop the
large drop becomes larger, falls faster, and is more effective in collecting
others. But as we shall see, because of the tendency for the air to carry
drops around each other, there are limitations on the initiation of this
process.

The three phase process is based on the fact that drops remain liquid
at temperatures below 0°C, and ice crystals, if they form, are much fewer in
number than the liquid drops. Since the equilibrium vapor pressure over ice
is lower than that over water at the same (sub-zero) temperature, there is a
strong gradient of vapor density away from the liquid drops toward the ice
crystals, so that rapid transfer of water occurs from the drops, which evap-
orate, to the crystals, which quickly grow large compared to the pre-existing
supercooled drops. The crystals fall relative to the remaining small drops
and collect them. Process (2) thus may initiate process (1), and the two
acting together can readily lead to the formation of precipitation-sized par-
ticles in subfreezing clouds. In warm clouds which precipitate, collision
and coalescence alone must be the activating process. There is considerable
evidence that even in clouds that extend upward into sub-zero temperatures
frequently precipitation is initiated by the collection process.

Since not all drops that are brought together by their relative motion
coalesce, the processes of collision and coalescence must be considered sep~
arately. The collision process involves the dynamics of the flow of the air
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in which the drops are imbedded and the dynamics of the drops in response to
the drag forces exerted by the air.

We shall first discuss briefly why condensation leads to the formation
of clouds with numerous drops too small to fall as precipitation. Then we
shall examine the conditions under which the collection process will initiate
precipitation. Finally, we shall discuss the meteorological factors that may
produce these conditions.

CONDENSATION AND THE FORMATION OF CLOUDS

While homogeneous nucleation requires vapor pressures several times the
vapor pressure in equilibrium with a plane water surface, clouds form in the
atmosphere with relative humidities very little above 100 per cent. This
is because in the atmosphere particles of haze or dust are always present to
serve as nuclei for heterogeneous condensation. These particles are predom-
inantly in the size range 0.005 ym to 5 ym. The lower limit is due to the
tendency for smaller particles to agglomerate rapidly because of Brownian mo-
tion. Unless there is organized upward motion, particles larger than one mi-
cron tend to settle out even though the effect of turbulence is to diffuse
them upward.

Typically the number of particles is greatest in the smallest sizes and
decrease rapidly with size. The larger ones and those composed of soluble or
at least wettable materials are most favored as nuclei for condensation as
liquid drops. Condensation on these nuclei takes the form of liquid drops
even at temperatures below 0°C. Only a few of the particles are effective as
nuclei for deposition of vapor directly in the form of ice or for freezing of
liquid drops, and that only at temperatures considerably below 0°C. We refer
to the latter as ice-forming nuclei (IFN) and the nuclei for condensation at
slight supersaturations as cloud condensation nuclei (CCN). As indicated
previously, the effectiveness of the three-phase precipitation process is due
to the small number of IFN in comparison to the number of CCN. The possibil-
ity of the collection process producing precipitation arises from the fact
that the varying size and composition of CCN lead to a dispersion in the size
of drops produced by condensation.

The rate of growth of a single drop of radius a growing from a soluble
nucleus of equivalent radius 8,,1is to a very close approximation

da FD LS 20 n(bmvaoaps
—- e - es(T) exp | — + - 3 (1)
dt pR _Ta RT fR Ta map

v v v 8

vhere F is the ventilation factor, D is the compensated diffusion coefficient,
p. 1s the density and 0 the surface tension of the drop, p_ and m_ are the den-
sity and molecular weight of the solute, R_the gas constint for’water vapor,
e and e (T) the ambient water vapor preésxre and its value in equilibrium
with a "plane water surface at the ambient temperature T, m the molecular
weight of water, § = (L p a/k T) (da/dt) is the increase in the temperature of
the drop above T due to the release of latent heat of condensation L, Kk is the
coefficient of thermal conduction, n is the number of ions dissociated per
molecule of solute, and ¢ is the osmotic coefficient. The argument of the
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exponential is usually sufficiently small for the series expansion to be lim-
ited to the lipear terms. In this case the growth rate can be expressed ex-
plicitly,

da a 8 ¥
—— |G - -3 (2)
dt a a a

where Sw= e/e - 1 is the supersaturation, a = ¥ D R K Tz e /p (R zrr3 +FD

L e ), B=2 0/9 R T, and Y =n ¢ m a 3P /m P As the drop grows the

third term and subsequently the second term —~ the solute term and the curva-
ture term, respectively — become negligible, and for sufficiently large drops

da _ Sa
dt a &
In the early stages, condensation on nuclei Qill occur only if the su-
persaturation is sufficiently large. From equation (2) the condition is

B v
§>=—=~ -

a &3’

and since Y is proportional to the nucleus volume, the supersaturation re-
quired is lower for larger CCN than for smaller. (For insoluble but wettable
nucle{ the condition is S > B/ao, and the same conclusion holds.)

If, as is always the actual case, CCN of various sizes are present,
condensation on the large nuclei will keep the supersaturation from rising to
the high values required for condensation on the small ones. Thus only the
larger and more soluble CCN are activated and form cloud drops. Even so the
number of nuclei that are effective is usually in the range 50 to 1000 per
cubic centimeter.

With more than one drop present the conditions under which equation (1)
is valid are not strictly met. However it has been demonstrated that even
with 1000 drops per cubic centimeter the drops are sufficiently far apart rel-
ative to their size not to influence each other's growth directly, but only by
affecting the degree of supersaturation.

Once the drops become large enough, the larger drops grow less rapidly
than the smaller, as shown by equation (3). Thereafter the spread of cloud
drop sizes becomes narrower and the rate of drop growth decreases as time goes
on. Between these effects and the depletion of available water vapor the
drops that are formed by condensation never are larger than a few tens of mi-
crons in radius.

As an illustration of the growth of cloud drops on a typical spectrum of
CCN, Figure 1 shows the results of a computation carried out by Neiburger and
Chien (1960) several years ago. The curve labeled "t = 0" shows the ini-
tial distribution assumed for the nucleus sizes. It is based on the summa-
ries of particle size measurements reported by Junge (1963). For convenience
all the nuclei were assumed to be NaCl. The air was assumed initially to have
temperature 16°C and relative humidity 75 per cent at 1000 mb pressure, and to
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cool adiabatically as it rose with vertical velocities approximating those
measured in cumulonimbus clouds (Byers and Braham, 1949). Figure 1A shows
the variation with time of the saturation ratio and of the drop sizes for the
initial sizes into which the nuclei were grouped, and Figure 1B shows the
drop size distributions after various elapsed times. Once the relative hu-
midity slightly exceeded 100 per cent the drops on nuclei 0.1 um or larger in
radius grew rapidly, while those on smaller nuclei did not continue to grow.
Shortly after the cloud formed, the separation between cloud drops and inac~-
tivated nuclei became evident, with modal radius of the cloud drops about 7
pm. At the end of the computation, corresponding to a rise of the air parcel
to 9 km, the modal radius was 20 ym. Of the approximately 100 per cubic cen-
timeter that were activated, about 70 had radii greater than 16 um, but only
about one per liter was greater than 22 um.

Similar computations with various realistic assumptions about CCN spec-
tra and cooling rates have shown that condensation of liquid drops does not
produce precipitation, even for very deep clouds. It has been found, further,
that turbulent fluctuation in updraft velocity and variations in nucleus com-
position do not lead to a broadening of the spectrum produced by condensation.
However, the introduction of additional nuclei during the entrainment of envi-
rormental air into the cloudy updraft and the penetration of successive ther-
mals through their predecessors appear to be able to explain the development
of sufficiently disperse drop size distributions to initiate the collection
process.

THE THEORETICAL COMPUTATION OF COLLISION EFFICIENCY

As a drop falls the air ahead of it is pushed out of the way, and if a
smaller droplet is contained in that air it likewise will tend to be carried
out of the path of the larger drop. Because of the inertia of the droplet,
the viscous drag exerted by the air may not pull it far enough, and if the
droplet is not too far from the axis of fall of the drop a collision may oc-
cur. The ratio of the number of droplets that collide to the number in the
volume swept out by the drop is called the collision efficiency E . Similar-
ly, the fraction of the droplets that the drop collides with that® coalesce
with {t is called the coalescence efficiency Ez, and the ratio of the number
of droplets with which the drop coalesces to the number in the volume it
sweeps out 1is called the collection efficiency E. Obviously, E = Es . Ez.

The theoretical evaluation of E_may be treated adequately by conmsider-
ing the dynamics of two rigid spheress moving in a viscous medium. For the
size of drops we are considering both the departures from spherical shape and
the internal circulations are negligible. Similarly, the drops are generally
far enough apart for the influence of the other drops on the motion of an in-
teracting pair to be ignored. Nevertheless, because of the non-linear terms
in the Navier-Stokes equations and the difficulty in satisfying the boundary
conditions on the surfaces of two bodies the problem is not amenable to solu-
tion without assumptions or approximations.

The problem of computing E_ involves two phases, first to determine the
flow field of the air around the two drops, regarded as rigid spheres, and
from this the force exerted by the air on the drops, and second, to compute
the trajectories of the drops in response to these forces. By computing the
trajectories for different initial displacements of the small drop from the



470

vertical through the center of the large one the grazing trajectory that
brings them just into contact can be determined. If the initial displace~
ments for the grazing trajectory is Y and the radii of the large and small
drops are A, a, respectively,
I 2 y 2
Es - < 2" < 2 (4
T (A + a) 1 +p)

where v " Yc/A and p = a/A. The non~dimensional critical displacement v, is
called the linear collision efficiency.

One simplification, valid for very small p, is the assumption that the
flow pattern is determined only by the large drop and is unaffected by the
small one. Even with this assumption the flow field cannot be determined
rigorously because of the non~linearity of the Navier-Stokes equations.

Using an analog computer, Langmuir and Blodgett (1946, Langmuir 1948) carried
out the computations for two limiting cases for which the equations can be
linearized, very low Reynolds numbers, for which the inertia terms can be
neglected, and very high Reynolds numbers, for which the viscous forces can
be ignored and potential flow obtains. For the intermediate values that are
of most interest in cloud physics they adopted an interpolation scheme.

Fonda and Herne (Herne 1960) repeated the computations with a digital
computer. Apart from the improved computational accuracy the only change
they made was to allow for the finite size of the small drop when determining
whether or not there was a collision. Both they and Langmuir and Blodgett
used the Stokes law for the drag exerted by the air on the small sphere.

When the size of the small drop is comparable to that of the large ome
the effects of both on the flow patterns must be considered. Pearcey and Hill
(1957) were the first to attempt to do so. They superposed the Oseen flow due
to each sphere separately to obtain the flow pattern for the two moving
spheres. It can be shown that the resulting drag forces are equivalent to
those that would be experienced by each sphere if it is moving with its own
velocity relative to the flow induced by the other. Since the Oseen approxi-
mation is poor close to the drops, where the interaction of the drops has most
influence on the collision efficiency, the values of E obtained by Pearcey
and Hill were not reliable.

For sufficiently small drops for the Stokes linearization to hold
Hocking (1959) obtained solutions that fit the boundary conditions at the
surfaces of the two drops rigorously. Because the equations are linear he was
able to superpose solutions for spheres moving along and perpendicular to
their line of centers to obtain the solution for relative motion in an arbi-
trary direction. His solutions were expressed in terms of series of which he
was able to determine only a few terms in evaluating the drag forces. Davis
and Sartor (1967) and subsequently Hocking and Jonas (1970) obtained improved
solutions for the forces in this case. They found that if the Stokes equa-
tions are valid however close together the drops come collisions cannot occur
because the force opposing their approach is inversely proportional to the
distance between their surfaces. Once the distance becomes commensurate with
the mean free path of the molecules of air viscous theory cannot apply. Davis
(1972) has considered the gas kinetic effects and found that they lead to
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somewhat larger values of Es for A < 20 ym than those found by Davis and
Sartor and Hocking and Jonas. It is presumed that these results are the best
evaluations of Es for very small A.

For larger drops, for which Stokes' approximation does not hold, most
of the recent evaluations of E_ have used the superposition technique with
numerical solutions of the 8 complete Navier-Stokes equations for the flow
fields induced by the individual drops (Shafrir and Neiburger 1963, -1964;
Neiburger 1967; Shafrir and Gal-Chen 1971; Lin and Lee 1973; Beard and Grover
1974). The exception is the work of Klett (1968) and Klett and Davis (1973),
in which an attempt is made to fit the boundary conditions at the surfaces of
the two spheres with a solution of Carrier's modification of Oseen equations.
It is interesting and reassuring that the various procedures, while leading
to some differences in the values of Ee’ do not give markedly different re-
sults.

Because all the theoretical evaluations of E_ involve assumptions and
approximations it is desirable to check their 8 validity with experiment-
al data. We shall discuss our experiments using the UCLA Cloud Tunnel later,
and in the next section present a comparison of various computational values
of E8 with earlier experimental results.

COMPARISON OF COMPUTED COLLISION EFFICIENCIES
WITH EARLIER EXPERIMENTAL RESULTS

The set of collision efficiencies computed over the most complete range
of cloud drop sizes is that of Shafrir and Neiburger (1963, 1964) and
Neiburger (1967). An extended and refined version, which we shall refer to
as '"modified S-N" values, is used here. As we shall see, these values cor-
respond fairly closely to the results of other computations and fit the re-
sults of experiments.

For convenience in interpolating to other drop sizes and in using the
values in drop growth computations it is convenient to have an analytic ex-
pression for the collision efficiency. Berry (1967) presented a formula that
fit the S<N values fairly well and Scott and Chen (1970) developed a somewhat
less complicated expression. In addition to being very complicated their for-
mulas do not include the values due to wake effects for nearly equal drops.
Lee (Neiburger, Lee, Lobl and Rodriguez, 1974) has developed a simpler equa~
tion that fits closely the modified S-N values over the entire range. The S-N
values shown in the following are those obtained from that equatiom.

Experiments give the value of the collection efficiency E rather than
the collision efficiency E . They would be expected to be the same only if
the coalescence efficiency E, is unity. Experimental evaluations of E have
been carried out by Picknett ~(1960), Woods and Mason (1964, 1965), Beard
(1968, 1970), and Beard and Pruppacher (1968, 1971). In most of these exper-
iments the collector drops were generated by a vibrating hypodermic needle,
which may have led to them having some electric charge. Usually the technique
used in determining E gave a lower bound rather than a precise value. Just as
the computed values of E , which we shall designate E_, are subject to uncer~
tainty because of assumptions and approximations, the experimental
values of E, which we shall call E_, are likewise uncertain because of experi-
mental difficulties and the difference between the conditions of the
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experiments and those in natural clouds. As we shall see, several computa-
tions using different approximations yield nearly the same values of Ec’ and
a number of experiments give values of E_ that are close to the com~
puted values. We may thus be inclined t8 conclude that for those experimen—
tal conditions Ez s~ 1 and the computed Ec are good approximations of E.

Experiments using the UCLA Cloud Tunnel to evaluate E have given values
of Ex considerably smaller than Ec for the same values of A and a (Neiburger,
Levin and Rodriguez, 1972; Levin, Neiburger and Rodriguez, 1973). The dif-
ference between these experimental results and the earlier ones was attributed
to the possibility that in the cloud tunmnel, in which atmospheric conditions
are more closely simulated than in earlier experiments, the coalescence effi-
ciency E, is much smaller than one when the collector drop has no electric
charge.

In this brief presentation it is impossible to review all of the re-
sults. In Figure 2 data are compared for some values of A for which the re-
sults of several computations and some experiments are available. The values
of Ec and Ex are shown for fixed values of A as a function of p.

For A = 30 um (Figure 2A) six computations are available, three in which
the Stokes approximation was used, two computed with the superposition tech-
nique, and one in which the modified Oseen approximation was used. The latter
three computations give generally higher values of E_ than the first three,
but for the most part the shapes of the curves are Cgimilar and the values do
not depart radically from each other. Only one series of experimental re-
sults (Picknett 1960) are available for this value of A. (The results of
Woods and Mason [1964] for A = 33.5 um correspond closely to Picknett's for
30 um.) Of the computations using the Stokes approximation Hocking's earlier
results agree better with Picknett's experiments over the small range of p
for which they were performed than the later, more accurate, computations by
Davis and Sartor and by Hocking and Jonas. Indeed, they also fit them better
than the other three computational results, which take account of the non-
linear terms and should be better even for this small a value of A. However,
since the experiment gives a lower bound for E rather than a precise value,
it is possible that the true value of E is closer to the Klett-Davis, Lin-Lee
and S-N values.

For A = 50 um (Figure 2B) the two other computations give slightly
higher values than the modified S-N ones as represented by the analytic for-
mula, but the experimental values, which are available only for large p, are
closer to the S-N. Similarly, for 70 um (Figure 2C) the curve representing
the Klett-Davis computation is everywhere above the S-N curve but the experi-
mental points fit the S-N values. The results for 40 um and 60 um, not il-
lustrated, are the same as for 70 ym. For 80 ym and 90 um, for which other
computations are not available, the experimental points also fall almost ex-
actly on the S-N curve.

Beard and Grover (1974) carried out new computations of E_ using the
superposition technique with flow fields given by Le Clair, et 81 (1970), and
compared the results for fairly large A and small p with experiments Beard
carried out using the UCLA wind tunnel. In Figure 2D their data for two val-
ues in the range that our computations apply are compared with ours. The
ranges covered by the probable errors are shown by the shaded rectangles, and
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it is seen that their results fall in the upper corners of the experimental |
error rectangles and ours in the extreme lower corners. This again suggests :
that for small p and large A the correct values of E may be somewhat larger

than our computed values.

In summary, the results of the various computations are quite similar,
and the available experimental data on the whole agree well with the modified
S-N computations. It is therefore suggested provisionally that the S~N val-
ues of E_be used for the collision efficiency of drops in the range 20 to
140 um.

CLOUD TUNNEL EXPERIMENTS WITH COLLECTOR DROPS
HAVING LITTLE OR NO ELECTRIC CHARGE

In our cloud tunnel experiments the conditions of natural collection in ;
clouds are simulated more closely than in other experiments in several ways. y
The air rises through the tunnel at the speed of the terminal velocity of the
collector drop, so that it remains motionless as the cloud of droplets is
carried upward in the air stream. Thus, relative to the air the collector
drop falls at its terminal velocity through the cloud of droplets that are
also falling at their terminal velocities. The ambient relative humidity is
about 100 per cent, so that evaporation or condensation plays little or no
role. The cross section of the tunnel is large enough so that there is prac-
tically no influence of the walls on the flow pattern near the center. There
is practically no externally induced turbulence.

To produce collector drops with essentially zero electric charge a
grounded hypodermic needle was used in our first series of experiments. For
later experiments a drop generator was constructed, using modifications of
the design by Abbot and Cannon (1972), in which the voltage on a hood or
shield determines the charge on the drop. With zero hood potential the charge
is practically zero.

In Table 1 the average values of E_ for uncharged collector drops,
grouped according to the range of their = radii A and size ratio p, are com-
pared with the computed collision efficiency Ec' Except for a few instances
of A in the smallest size range, E_ is much smdller than E. In previous dis-
cussions of some of these data x (Neiburger, Levin and Rodriguez 1972;
Levin, Neiburger and Rodriguez 1973) it was suggested that the explanation of
~ the difference was that the coalescence efficiency E, was small for the con-

ditions of the experiments. The difference between ~ these results and those
of previous experiments was attributed to the possibility that in the earlier
experiments the collector drops had sufficient charge to overcome any inhibi-
tion of coalescence.

It was reasoned that if this is true an electric charge could be applied
to the collector drops that would be sufficient to raise the coalescence effi-
ciency to unity without being so large that it would affect the motion of the
drops and thereby increase the collision efficiency. The variation of E with
drop charge Q would then be such that it would first increase with Q until Ez
reached unity, then remain constant at E_ until Q became so large that E
would be affected. To test this hypotheSis experiments were carried out
the cloud tunnel with small collector drops having various magnitudes and
polarities of electric charge.

& 4n
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CLOUD TUNNEL EXPERIMENTS WITH CHARGED COLLECTOR DROPS

The hypothesis postulated at the end of the preceding section may be
expresgsed as follows: For each value of A and a there exist two values of
charge Ql, Q2 such that when the charge on the collector drop is smaller than
Ql’ £ > Ez < 1; when Q1 =Q= Q2, E£ =1, Es = Ec; and when Q > Q2’

8 e’

The effects on Es of charge on a collector drop interacting with un-
charged droplets has been evaluated previously (Semonin and Plumlee 1966)
only for the case of A= 30 im and a = 5 ym. They reported that a slight in-
crease in Es began when Q exceeded 6°10 7 esu; their graph shows very little
increase for Q less than 3°10 8, PFor a = 10 um, the value frequently
used in our experiments, some idea of Q, may be obtained from the computa-
tions they carried out with charges on = the collected drops as well as the
collector. For charges with opposite sign the threshold charge on a 30 um
collector drop_interacting with 10 um droplets bearing charges 1/9 as large
was about 2°10 ° esu.

The influence on E_ of a charged drop collecting uncharged droplets

would be due to the dipoie moment of the droplet induced by the field due to

the charged drop. Since the induced dipole moment 1s a function of the dis-
tance between the drops, it appears safe to assume that the effect will be
significant only when the drops are close together, and that the charge re-
quired to affect the collision efficiency will therefore be considerably
larger than that affecting it when both of the drops are charged. From this
consideration we anticipate, for example, that 30 um radius collector drops
falling through a cloud of uncharged 10 um droplets would have to bear
charges of at least 10 * esu in order that E, should be affected.

For estimation of Q. the experiments of Jayaratne and Mason (1964) are
the most informative. They studied the coalescence of drops impinging on a
plane or wavy water surface. The smallest drop for which they evaluated the
critical charge required to cause coalescence was 139 um in radius; for this
size the critical charge was about 6°10 5 esu. Except for large impact ve-
locities the critical charge increased with radius. The relation between
coalescence of a charged drop with an uncharged water surface (corresponding
to an uncharged much larger drop) and our case of a charged drop coalescing
with an uncharged smaller droplet is not clear, but it seems safe to expect
that Q1 would have the same general order of magnitude. From this discussion
we see  that there is a possibility, but not a certainty, that the required
condition, that Q1 < QZ’ is satisfied.

We shall not discuss in detail in this paper the various experimental
difficulties that were encountered in attempting to evaluate the collection
efficiency of small collector drops (A < 40 ym) in the cloud tunnel. They in-
clude the fact that characteristics of the cloud, such as liquid content and
droplet size, may change as the air speed in the tunnel is increased to keep
the growing drop stationary. The liquid content was measured continuously,
but not the cloud drop size spectrum. Similarly, the charge on the collector
drop was known when it was generated, but it might have changed due to col-
lection of ions in the air stream or charges on the collected droplets, al-
though the charges on the droplets were measured to be less than 10 ° esu, so
that the small number of them that were collected in any one experiment would
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not affect the charge on the collector drop significantly. There was a con-
sistent decrease in the rate of collector drop growth with time for all the
experiments. One possible explanation of this decrease is that the charge on
the collector drop was being neutralized. Another is that the size of the
droplets became smaller as the air speed increased.

When E is large and the cloud sufficiently dense the equation for con~
tinuous growth can be used to evaluate it. Solved for E this equation is

4p2 AA

E = —_—

L Ga+a) w-wv at

5

where p is the density of the liquid (one for water), £ the mass of liquid
per unit volume of the cloud, V and v the fall velocities of the drop and
droplet, and AA is the change in collector drop size in At seconds. The
slope AA/At may be determined from an analytic expression fitted to the curve
representing the variation of observed drop size with time, or an average
value can be computed from the difference in radius at the beginning and end
of a time interval At.

When the collection efficiency is so small that even with a dense cloud
only a few droplets are collected during the experiment the continuous growth
equation cannot be used. If n is the number of droplets collected and N is
the number of droplets per unit volume of the cloud (N = 3%/4 'y p), the
collection efficiency is approximately

ESn/f (V-v) 7 (a+a) At . (6)

The value of n can in some cases be determined by counting the steps in the
record of the tunnel speed as it is changed when the drop grows by collection.
If the steps are not sufficiently distinct and n is sufficiently large to per-
mit assuming that the average volume of the collected droplets is representa-
tive of the entire cloud, n can be computed from the change in volume of the
collector drop: '

n= (a2 - ADy/a? = /e

where Ai’ Af are the radii of the collector drop at the beginning and end of
the time interval At, Equation (6) becomes

ES4pMI/30 (A+a)d (v-v) At . %0

This equation is equivalent to equation (5) if the droplets are collected so
frequently that At can be treated as an infinitesmal.

When equation (6) is used with small n, there is uncertainty in the val-
ue of E because of the variability of intervals between successive collection
of droplets. If € is the probable error in At, it can be shown that the prob-
able error in E 1s approximately € E/At.

In Figure 3A the results of one series of experiments, with A in the
range 20 um to 23 um and a about 10 um. For A this small the collection
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efficiency with zero charge is zero. The x on the ordinate axis shows the
value of E (the computed value of E ). It is seen that the experiment ap-
pears to corroborate the hypothesis. Ex increases with charge
Q, reaching the value of Ec at Q = 0.7° 10" esu, and™ then remains constant
until Q exceeds 1.2°10 * eSu. Then it increases and becomes larger than the
geometric collection efficiency when Q exceeds 2°10 * esu. This suggests
that for Q smaller than Q, = 0.7° 10" " esu the coalescence efficiency E, is
less than one, that it reaches unity when Q attains that value; but that the
charge does not affect Es until Q is greater than Q2 = 1,2°10 * esu.

If all the experimental data conformed to this pattern we would con-
sider the hypothesis demonstrated. However, when all the data we have col-
lected are congidered the evidence 13 far from conclusive. Thus, in Figure
3B the results of all our experiments with drops in that range are shown.

The same general trend is seen, with E_ smaller than E_ for small charge and
increasing with Q, but for some for sofie of the series E_ 1is reached and ex-
ceeded for much smaller values of Q than in Figure 3A. We are not aware
of differences in the experimental parameters that would produce the differ-
ences in the results.

Figure 3C shows results for A in the range 26 ym to 29 gm with a = 10
um. The data suggests that Q, is 1.3° 10 * esu and Q, is 2° 10 * esu. However
there 1s some scatter in the results. In Figure 3D the data for A in
the range 32-35 im, a = 10 um are shown. It appears that for this size Q1
and Q2 are both greater than 2.5° 10°" esu.

Figure 4 shows data for three ranges of A with a = 15 im. The behavior
of the positive charge cases (solid symbols) was sufficiently different from
the negative for separate lines to be drawn for them. The increase of Ex
with increasing charge is more rapid for the smaller values of A, as expected,
but the leveling off, insofar as it is apparent in the data, does not occur
at the values of E corresponding to the computed collision efficiencies. By
comparing Figure 4 with Figure 3 we see that for the same charge and range of
A, Ex is considerably larger for a = 15 um than for a = 10 um.

The data displayed here is suggestive rather than conclusive. It is
clear that E_ increases with Q and that for a specified charge the effect is

larger the smaller the value of A. There are indications in some of the
data of the plateau that would occur if Q1 < Qz. In some instances the pla-
teau or a leveling off occurs at another value of Ex'

Charge could affect E, in two ways, firstly by reducing the time of
thinning of the air film as the drops approach each other, and secondly by
changing the thickness at which surface rupture and coalescence takes place.
The details of these effects cannot be studied by cloud tunnel experiments,
but by careful control of the various parameters it may be possible to dis-
tinguish between the factors that affect the thinning and those that influ-
ence the surface rupture.

IMPLICATIONS OF COLLECTION EFFICIENCY ON THE PRECIPITATION PROCESS

While the information concerning the effect of charge on collection ef-
ficiency is of intrinsic interest in shedding light on the collision and co-
alescence processes, the data so far does not appear to clear up the initiation



477

of warm rain. We have seen that the charge required for influencing E is of

the order of 10°° or 10 * esu, but the available data (e.g. Webb and Gunn, _
1955; Takahashi, 1972) indicate that natural cloud drops bear much smaller i
charges. ;

There have been a number of studies to determine the circumstances un-
der which condensation can produce sufficiently large drops to start the
collection process. The collision efficiency computations suggest that there
must be drops at least 20 um in radius for it to begin, and the cloud tunnel
experiments indicate that the minimum size may be as much as 30 um or even
40 um unless the drops carry unusually high electric charges. Among the ways
that have been shown to result in the growth of large drops by condensation
are (1) the presence of abnormally large soluble nuclei — giant salt praticles
5 uym or more in equivalent radius —; (2) presence of unusually few CCN, so
that the water vapor is shared by relatively few drops; this is sometimes true
of maritime air in contrast to continental air; and (3) occurrence of entrain- .
ment or a succession of penetrative thermals in which competition between con- '
densed drops and newly activated CCN brought in from the environment leads to
a wide drop size spectrum.

To see how sensitively cloud drop growth by collection depends on the
drop size dispersion, Chin and Neiburger (1972) carried out some computations
of the evolution of drop spectra with differing characteristics. The govern-

ing equation is

Q) |
ot

N

M
f?@)n@m)K(mmm)m
0 (8)

- n('M)f n(m) K (m,M) dm .
o

In this equation the first integral on the right side represents the increase
in number density n(M) of drops of mass M due to collection of drops of mass
m by drops of mass M-m, and the second integral is the decrease in n(M) due
to collection of other drops by drops of masgs M. K (m,M), the collection

kernel, is given by

K @M) =7 (Ara)l E (V=v) .

For the collection efficiency they used the S~N computed values of Es'
and for the droplet spectra they used both Gaussian distributions and
Khrigian-Mazin (K-M) distributions, the latter given by

n () = (1.45 2 a2/a®) exp (- 3 a/a) :

where a is average radius. Kﬁrigian and Mazin found that this expression fits
the observed distributions in a variety of types of clouds.

Chin and Neiburger's computations showed that for distributions having
the liquid content, mean volume radius, and relative dispersion the K-M spec-
tra, because of their skewness, led to more rapid development of large drops :
by the collection process. In the K-M expression the average radius a deter- f
mines both the modal radius and the dispersion. In Figure 5A the K~M ’
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distributions for' three values of ;; 4.5 ym, 6.0 ym, and 7.5 um, with & =
lgnm ’, are shown. While the modal radius changes only slight with in~
crease in a, the number of drops with radii larger than 20 ym increases mar-
kedly.

The resulting difference in the effect on collection 1s shown in Fig-~
ures 5B, 5C, and 5D. In these diagrams the specific liquid content q, ex-
pressed in grams per cubic meter per unit of log, a is graphed against log a,
in order to show the transfer of liquid content grom small to large drops.

It is seen that for the case of a = 4.5 um, in which there are very few drops
with radius larger than 20 um, there is negligible change in liquid water
distribution, but for a = 7.5 ym the water accumulates on larger and larger
drops, so that by 2000 seconds there is a larger mass of water in drops larg-
er than 100 um radius than in the more numerous smaller cloud drops. The
effect of the drops initially larger than 20 um is clearly demonstrated.

There have been a number of attempts to incorporate the microphysical
processes of condensation and collection together with the larger scale dy-
namical processes into a complete model of the development of precipitation.
As an example of these attempts we shall cite the investigation by Ogura and
Takahashi (1973) of the development of warm rain in a convective cloud. They

- computed the development of convection in a conditionally unstable atmosphere

using a "one and one-half dimensional" time-dependent model, and evaluated
the distribution of drop sizes as a result of condensation, coalescence, sed-
imentation and drop breakup. As an indication of the result Figure 6 shows
the size density as a function of height 40 minutes after the inception of
convection. The water content has already developed a second peak density
for drops about one millimeter in radius, and precipitation is reaching the
ground.

CONCLUSION

The physics of drops remains a central problem in meteorology. While
the theory of condensation on nuclei appears to be fairly well in hand, the
circumstances when it leads to drops large enough to engage in the collec-
tion process are not well known. The values of collision efficiency appear
to be satisfactory, but the coalescence efficiency is almost unknown. 1In
particular, the influence of charges and fields on them, especially the very
suall charges and fields that occur naturally in the early stages of develop-
ment of cloud and precipitation, need investigation.
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Figure 5. (A) Khrigian-Mazin drop size distributions for L=1¢gnm m.3 and

I: a=4.5um, II: a = 6.0 um and III: a = 7.5 um. (B) Distributions at
various times, given in seconds, resulting from evolution of spectrum I due

to collection. (C) Distributions resulting from evolution of spectrum II

due to collection. (D) Distributions resulting from evolution of spectrum III.
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Table 1

Comparison of Experimental Collection Efficiency (Ex) and
Computed Collision Efficiency (Ec) for Collector Drops of
Radius A with Approximately Zero Charge
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WATER DROP INTERACTIONS

C. B R. Saunders
University of Manchester
Institute of Science and Technology, Manchester
England

Abstract

Research in this department has centered on the role of the
water drop in atmospheric physics. The principal interest has
been in determining whether drops, either singly or by interacting
with others, can modify the physical conditions inside natural
clouds. By the practical modelling of water drop interactions in
the laboratory in a variety of experiments, it has been shown that
1) partial coalescence is followed by satellite drop production
which modifies the cloud drop-size distribution and can accelerate
rainfall; 2) the freezing of supercooled drops may be accompanied
by ice splinter production; 3) the vibrational frequencies of
supported and freely suspended drops are modified by the presence
of electric charge and electric fields; 4) interacting drops can
separate charge in the weak electric field of the atmosphere in
such a manner as to increase the electric field but more usually
to decrease it; 5) when the ambient electric field has reached
values far below that needed for breakdown of the air, two
interacting drops can promote breakdown, which in natural clouds
will initiate lightning.

The paper will deal with aspects of these phenomena of
relevance to the Conference and in particular will present the
latest results on the interaction behaviour of two water drops
in an electric field.

Water drop interactions play an important role inside natural
clouds; the comlescence of drops modifies the size distribution
and is responsible for the growth of individual drops to precip-
itation drop size such that they will fall from the cloud as
rain. Drop interactions within the ambient electric field of
the lower atmosphere, when they result in separation, are able
to separate electric charges between the two interacting particles
which due to a size difference may fall at different speeds thus
separating electric charge over a large volume of the cloud.

DROP COALZSCENCE AND SATELLITE DROP PRODUCTION

Research in this laboratory has been closely involved with
these processes and both experimental and theoretical studies
have been made. Utilising the apparatus shown in Fig.1, Brazier-
Smith, Jennings and Latham' were able to produce twe controllable
streams of water drops of radii R and r between 150 and 750um
with R/r in t?e range 1.0 to 2.5, relative velocity U from 0.3
to 3,0 m.sec”™' and impact parameter X, the perpendicular distance
between the centre of one drop and the undeflected trajectory of
the other from X = 0 to (K+r), the maximum value for contact.
Water flow from the reservoir was modulated by two oscillating
pumps before it passed through fine hypodermic needles. The flow
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rate, frequency of modulation and size of needle controlled the
size of the drops. Several types of interaction were noted:-

1) bouncing contact, with the air film preventing contact,

2) permanent coalescence and 3) temporary coalescence with and
without satellite drop production. These categories are shown
in Fig.2. PFig.3 indicates the collision parameters where ¢ is
the angle between the streams of drogs and VR and Vy are the
drop velocities, then: U2 = Vg2 + Vp.© - 2VRVpcos@. @ was
measured photographically and the velocities could be determined
from the modulator frequency. A critical value of £ was found,
Xo, above which separation of the drops occurred and below which
the coalescence was permanent; thus a coalescence efficiency was
defined: e 2

€=(R+r)°
¢ was zero when bouncing occurred for low velocity collisions with
X nearly equal to (2+r). At higher velocities, the other collision
categories occurred and at large values of X, the angular momentum
was sufficient to cause separation of the temporarily united drops
and the long filament which was pulled out as they separated broke
into small satellite droplets. Only at values of X close to X,
was separation not accompanied by satellite production, and because
this was such a limited range of all the possible values of X which
did produce satellites, it was assumed that such production is
common in nature.

The criterion for separation was simply that it occurs if the
rotational energy exceeds the additional surface energy required
to reform the two drops from the coalesced drop-pair of radius R,
rotating with angular momentum J about its centre of gravity.

J = (4mpUxr’R%)/[(3)(R7 +19))
where p is the drop density. The rotational kinetic energy,

J2/21, 1s given by g g _ 5,.02¢2R6:6/(3r,!!) where I is the
moment of inertia of a sphere rotating about an axis through its
centre (7 _ 8nR°50/15). The additional surface energy S.E. needed
to reform two drops of surface tension g is

4nr20(1*y2 - [1+y3J§) where y = R/r.
= Xc at the boundary between coalescence and separation,
R.E7, and

e = 2.40£(R/r)/(rpU?) (1)

where f(R/r) = [(1+y2 - (1+y3)§)(1+y3)§3/[y6(1+y)2] which varies
from 1.3 for R/r = 1 to 3.8 for R/r = 3. U2rp/c is a dimensionless
parameter characterizing the interaction process.

When
S.E.

[

Fig.4 shows the measured variations of g(= e%) and ¢ for
values of r and Uzro/c respectively for equal sized drops. The
theoretical curves were obtained from the above equation. g de-~
creases as U and r increase and ¢ decreases from 1 towards zero
as U¢rp/o increases from 3 to infinity. Fig.5 is for unequal
drop sizes. In all cases excellent agreement was noted between
the experimental data and theory. The results showed that ¢ lies
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between 0.1 and 0.4 for equal sized drops and between 0.2 and
0.6 for drops with R/r = 2.0. At larger values of R/r less
angular momentum was available to pull the two drops apart.

Fig.6 shows the effect of small equal and opposite electric
charges on the drops, of magnitude similar to that found in
natural clouds. At the lower velocity the drops had longer to
interact and hence ¢ reached a higher value than at the higher
velocity. The charges were sufficient to modify the trajectories
of the drops only slightly causing e¢ to reach a maximum value for
charges of +3pC.

Brazier-Smith, Jennings and Latham® made use of the above
date in a stochastic computation of the development of rainfall
taking into account the production of satellites in an attempt
to explain the rapid increase in drop size as revealed by radar
which occurs in thunderclouds. The above theory predicts that
drops of radii between 300um and 500um colliding at their term~-
inal velocity with larger drops of radius greater by a factor of
between 1.5 and 3.0 will provide the largest contribution to the
rate of production of satellites which are typically of 80um
radius, a typical event producing about 3 satellites. A stoch-
astic growth equation was generated which permitted calculations
to be made of the evolution of a distribution of drops within a
homogeneous cloud. The breakup of drops larger than >mm radius
was included in the computation but was found to be less impor-
tant than satellites in the production of rainfall. In order
to compute rainfall rates account was taken of the continuous
collection of non-precipitating cloud water by the drops. ,The
cloud water was released by condensation at a rate J mg.m'3s'1.
The initial drop spectrum A consisted of 2,500 drops per cubic
metre in the radius range 30 to 10Qum with a water content of
3 mg.m~>. Four types of interaction were considered: Case 1,
Coalescence efficiency e given by equ. 1, satellites produced;
Case 2, ¢ given by equ. 1, no satellites produced; Case 3,
¢=1, no satellites; Case 4, e=0, with satellites. It was found
that the time taken for the precipitation intensity to reach
10mm.hr-1 occurred at about 850sec for all cases; thereafter
they diverged so that at an intensity of 50mm.hr-1 the time
interval between cases 3 and 4 (the fastest and slowest respec-
tively) was only 1 minute. Cases 1 and 2 were identical showing
that the influence of satellite drops and the particular value
of ¢ chosen are not important to the rainfall rate. By increasing
J, the precipitation intensity increased rapidly showing that
micro-physical processes involving raindrops are much less impor-
tant than the rate of release of cloud water. Fig.7 shows the
raindrop size-distribution after 20min in which it is seen that
the rate of production of large drops is sensitive to the value of
€. Case 3, for ¢=1, has developed the largest drops, and in
Case 1, the satellite drops lead to a bimodal distribution with a
peak around 100ym. This most realistic case is shown in more
detail in Fig.8. The unrealistic depletion of smaller drop sizes
is due to the cut-off of the initial size distribution at 30um
and the non-replenishment by coalescence of cloud droplets. The
radar reflectivity, rnjr;i°, was determined and increased by an
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order of magnitude every 2imin. Because of the r6 dependence,
the satellites produced a negligible contribution. Thus the
overall conclusions of this work were that the contribution of
satellite drops to the rainfall rate is insignificant.

In a development of this work Brazier-Smith, Jennings and
Latham’ computed the effects of evaporation and drop-interactions
on a rainshaft. They concluded that the coalescence of raindrops
acts to preserve within the rainshaft a considerable amount of
liquid water that would otherwise have been lost by evaporation.
Another conclusion was that the capture of small and satellite
drops by larger raindrops is more efficient than evaporation in
removing the smaller particles from the spectrum.

INTERACTING WATER DROPS: CHARGE TRANSFER

Sartor4 showed that high electric fields may be rapidly
generated by the interacting particles which separate charge in
such a manner as to continually enhance the existing field. This
process is known as the indgctive process of thunderstorm electri-
fication. lLatham and Mason’ calculated that if two contacting,
conducting spheres separate in an electric field, then the amount
of charge, q, which is transferred is given by:

g=1.1x 10'1°y1Er2cose where § is the angle between the

electric field and the line of centers of the spheres at the moment
of separation; yq is a function of r/R which decreases from ne/2
when r/R = 0 to n2/6 when r/R = 1. In an experimental study of
this effect the apparatus shown in Fig.1 was used, with the
addition of a horizontal electric field and two induction cans
connected to electrometers in order to catch and measure the
charge on the drops after separation. The type of interaction
used is shown in Fig.3(iv) in which the fine filament drawn out
condenses to form satellite drops. Preliminary measurements of the
charge transfer are shown in Fig.9 in which the theoretical line
is calculated from the equation above. In the upper graph for
equal drops there is an indication that the charge trangfer is
larger than that predicted by theory. Censor and Levin® have
computed theoretically the charge transferred between two drops
which have a long neck between them prior to separation. For
example, for a filament of length 4R for equal drops the charge
transfer is enhanced by 100% above that for the separation of
undeformable drops._Without taking this enhancement into account
Jennings and Latham! showed that_the charge transfer process is
capable of separating 1 Coul.km=3min=! of charge in an existing
electric field of 30kV/m typical of an embryo thunderstorm having
a typical precipitation water content of 4 gm.m3. Such a charge
separation rate was shown by Mason8 to be a requirement of a sat-
isfactory thunderstorm electrification theory. However, this
particular interaction studied here separates charge in a manner
which reduces the electric field. Sartor envisaged a process
whereby the drops do not swing around each other while in contact
but separate before swinging round; such a process is more likely
to occur in clouds below 0OC when solid particles interact. Thus
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it seems that in all-water clouds, interactions occur which dis-
sipate the field, and if the enhanced charge transfer due to the
filaments is taken into account, this dissipation will be even
faster. It seems even more difficult now to explain "warm-cloud
thunderstorms", containing no ice, which have been reported in
the literature. ZExperiments on this important subject are being
continued in UMIST.

VIBRATIONAL FREQUENCIES OF DROPS

This subject is of interest because of the possibility of
determining drop sizes within clouds by using a ground-based radar
whose return signal is modulated by the vibrating drops. Rayleigh9
determined the natural frequency of vibration of a drop carrying
electric charge:

where Q is the charge on the drop, T is the surface, tension and

fo is the charge-free frequency given by (2T/n2R3p)f. Experiments
were conducted by Saunders and WonglO using a vertical wind tunnel
to freely suspend the drops and a high-speed camera to record the
drop vibrations from which their frequency could be determined.
The results were is excellent agreement with theory d showed
that for a typical 2mm radius drop carrying 3 x 10-1YC the measured
drop-size would suffer an error of 0.6%. Of more importance is
the effect of the electric field; a field of 6 x 105V m-1 in this
case leads to an error of 8.5%. Brazier-Smith, Brook, Latham,
Saunders and Smith!! investigated the behaviour of vibrating drops
in an electric field and developed a theory to relate the vibra-
tional frequency to the electric field. ZEZxperimental measurements
agreed well with this theory. Thus if the vibration of raindrops
is to be used to determine drop-size distributions in highly
electrified clouds, the field strength will have to be measured
independently.

LIGHTNING TRIGGERING BY INTERACTING WATER DROPS

The most favoured explanation for the initiation of lightning
has been that positive corona is given off from the surface of a
highly distorted raindrop in a high electric field. Unfortunately
the electric field required for this to occur is over 550kV/m,
whereas the maximum field measured in a thunderstorm is 400kV/m.
A field of 400kV/m is able to extend the length of positive
streamers which suggests that this value of field is required fOf
lightning initiation. A recent study at UMIST, Crabb and Latham 2.
has been made to discover whether a pair of raindrops within a
thundercloud may be grossly distorted and produce corona at a
lower onset field than a single drop. Fig.10 shows the apparatus
in which a large drop of radius 2.7mm could be dropped while a
smaller drop of radius 0.65mm could be ejected upwards so that
the two collided within a vertical electric field with a realistic
relative velocity of 5.8m.sec~!. A storage oscilloscope was con-
nected to the lower plate which was grounded and thus positive
corona discharge given off from the underside of the drops could
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be detected. Fig.11 shows several of the interactions: 'd’

shows a central collision with the larger drop in the 'bag mode’;
in 'e' the smaller drop has broken through the bag. The most
glancing collisions (b,c,f) resulted in the formation of liquid
filaments sometimes 20mm long which broke up into droplets. 70%
of all interactions resulted in the emission of corona with a
minimum field of 250kV/m producing corona when the filament
length was a maximum. Corona occurred for central collisions in
fields of around ngkv/m. Continuous corona was not observed,
usually around 107™WC of charge was released which is insufficient
when all drop interactions are taken into account, to reduce the
conductivity of the cloud and hence inhibit field growth. However,
by assuming that corona is initiated in fields below 350kV/m if
the two drop radii are greater than 1.8mm and 0.65mm, then in a
cloud of precipitation water content tgm/m3 the rate of corona
events is 2 x 10-2m~3s-1, which is 1 per minute per cubic metre
which is adequate to explain lightning initiation.

ICE PARTICLE MULTIPLICATION

One of the most puzzling problems in atmospheric physics at
present is the discrepancy between the concentration of ice part-
icles in clouds whose lowest temperature is above -120C, compared
with the concentration of ice foraing nuclei. For example,
Hobbs!3 found that the ratio of ice crystal concentration to ice
nucleus concentration decreased sharply with decreasing temper-
ature from about 104 at -59C to unity at -259C. In such clouds
there are always cbserved rimed ice pellets of a few millimetres
diameter together with large supercooled drops of radius greater
than 250um. The most likely mechanism of ice particle multipli-
cation is one in which supercocled drops shatter on freezing,
either in isolation or when they impact onto an ice pellet and
form rime. Hallett and Mossop!4 have found that several hundred
ice splinters were ejected for every milligramme of accreted rime,
a result which is 3 orders of magnitude greater than other workers
and has not yet been independently verified, but which is suffic-
iently large to explain the discrepancy. An investigation of the
isolated drop freezing process has been proceeding in Manchester.
Gayl> has constructed a chamber, Fig.12, in which supercooled
water droplets can be freely suspended in atmospheric conditions
while their freezing behaviour is noted. The charged drop is
introduced into an electrodynamic field by Blanchard's bubble
bursting technique15. The drop is supported by a vertical d.c.
field and constrained by amalternating potential applied to a
metal ring surrounding tre drop. Holes in this ring permit
observation of the drop whose vertical position can be controlled
by varying the d.c. field. The whole electrode system is sur-
rounded by a low temperature chamber and an attempt was made to
maintain the environment in a supersaturated state so that if an
ice splinter were to be ejected upon freezing, it would grow and
could be detected. It proved impossible, however, to achieve
supersaturation due to the deposition of the vapour upon the
electrode. With this limitation, the freezing of supercoocled drops
was studied. Below -159C the drops often froze spontaneously;
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above this temperature nucleation was induced by introducing
silver iodide. The charge-to~mass ratio of the drop was deter-
mined before and after freezing; freezing resulted in the drop
being displaced and it could be restored to the original position
by adjusting the d.c. potential. The drop size was measured, and
the initial charge on the drop was known. Table 1 shows the fre-
quency of occurrence of the various freezing modes. In 70% of
the cases freezing occurred rapidly with an increase in charge

to mass ratio of 5 - 10%; no visible matter was ejected and the
drop remained spherical. In 18% of the cases surface irregular-
ities occurred but again no visible splinters were ejected. For
3% of the cases, frost-like growths on the frozen drop were seen
to detach themselves from it and were swept up in the electric
field. In 10% of the cases the frozen drop exhibited subsequent
changes in its charge to mass ratio. 2% of freezing drops which
were allowed to evaporate to the Rayleigh limit froze on disrup-
tion, the charge to mass ratio decreased but no splinters were
observed. Calculations of the mass loss showed that it exceeded
the theoretical evaporative mass loss on freezing and was there-
fore due to the ejection of either liquid or solid material.

The general conclusion of this work is that drops in the radius

range 25-100um produce, typically, 40 splinters when they freeze

with maximum production at -=59C, but the conclusions are based

on secondary evidence only, it being impossible to capture a .
splinter. Such a number of splinters is adequate to explain the

ice multiplication in clouds as shown by the stochastic treatiment
of Chisnell and Latham!7. This multiplication process is of such
importance that more effort needs to be expended in order to de-

velop a method of permitting a droplet to freeze in a supersatur-
ated environment so that the splinters produced will grow and

may be captured.

' CONCLUSION

Work in UMIST is directed towards solving some of the out-
standing problems in atmospheric physics and in particular the
role that water drops and water drop interactions play in the
physical and electrical growth and development of clouds. To
this end work is continuing into the coalescence of drops, both
experimental and theoretical in order to build up a realistic
picture of the development of a cloud particle spectrum through
the life-time of a cloud. Laboratory simulations of charged
water drop interactions in electric fields are continuing in
order for us to be able to understand "warm-cloud" elecirific-
ation. The study of the triggering of lightning is to be ex-
tended to a large scale laboratory cloud to learn whether the
individual interactions which lead to corona discharge will
occur in a more realistic environment with many more than just
two particles present. It is hoped to aevise a means of freely
supporting a supercooled drop in a supersaturated environment
in order that any fragments which may be emitted upon freezing
can be captured and identified in order to resolve the most
important ice multiplication problem.
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Various shapes assumed by drops of radius 2-7 mm colliding with ones of radius 065 mm with
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uen: [«]
Mode of Number % increase in a1%
freezing |of drops | charge~to-mass

ratio

"common" 377 5 - 10% 0-29
spikes & -
bulges 98 -~ 10% 5 =25
splinters 19 ~ 10% -~ 15
aecondary - -
mass loss 53 ! 15
Rayleigh
freezing 2+ decrease 10
drop
splitting ' ~ % 8
total 549

* out of 100 drops in a separate study.

Table 1
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NUCLEATION THEORY AND ITS ATMOSPHERIC APPLICATIONS

I. INTRODUCTION

In recent years, the growth of interest in the study of nucleation
theory for metastable systems has greatly increased. This increased
interest is due in part to the fact that nucleation in supersaturated
vapors or superheated liquids is one of the most important aspects of many
fields, such as the atmospheric sciences, biology, chemistry, industrial
engineering, and physics. A serious communication problem and a disconcerting
lack of overall direction among research efforts always exist in a field
involving multiple disciplines. One of the methods of speeding up scientific
progress is to bring together information from various fields relating to
one common problem., The International Colloquium of Drops and Bubbles
certainly will provide an opportunity to exchange information from different
disciplines on the science of liquid drons and bubbles in liquids.

From the viewpoint of kinetic theory, liquid drops in a gas phase or
gas bubbles in a liquid phase can be considered one of the metastable
states of gas-liquid phase transition. This phase transition is initiated
by nucleation. In general, the metastable states can be described by three
stages: (1) the development of a supersaturated state; (2) the generation
of nuclei of the new phase; (3) the growth of these nuclei to form larger
drops or larger bubbles.

The supersaturated state can result from changes in physical parameters
(pressure, temperature, tension, etc.) or by chemical-photochemical pro-
duction of reactants which have low volatility. Nuclei of the new phase
can be generated homogeneously by: (1) homogeneous homomolecular nucleation,
which involves only one gaseous component; (2) homogeneous heteromolecular
nucleation, which involves two or more gaseous components, i.e., H,SO
and H,0 molecules can combine to form a sulfuric acid drop. They can also
be generated heterogeneously by the additional force fields associated
with ions, impurities, surface or structural imperfections. Each of these
heterogeneous nucleations can be, of course, either homomolecular or
heteromolecular. In this report, we concentrate our efforts on the studies
of the nucleation phenomenon and its atmospheric applications. The growth
processes are covered by other speakers in this colloquium and will not
be discussed here.

We briefly discuss the present status of the homogenecus nucleation
theories and experiments from the vapor to the liquid phases in section II.
Section III covers some selected nucleation phenomena and their roles in
the atmosphere. Problems associated with nucleation theories such as
"microscopic surface tensiom," "contact angle," etc., are examined in
detail in section IV. In the conclusion, we outline some future research
problems in relation to the study of nucleation phenomena.

II, HOMOGENEOUS NUCLEATION THEORIES AND EXPERIMENTS

While homogeneous nucleation processes have little application to the
real atmosphere, their study is nevertheless the basis of much other, more
useful theoretical work. Here, we briefly discuss the present status of
homogeneous nucleation theories and experiments.
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Three theoretical approaches are most commonly used for study of
homogeneous nucleation phenomena, namely, (1) the thermodynamic approach
(2) the statistical approach’,""§ and (3) computer similation®? 7* ®? Thermo~
dynamic theories assume the equilibrium number of clusters (per cumic
centimeter) C(n), containing n molecules to be proportional to exp(-AG_/kT),
where AG_ and the value of the proportionality factor for C(n) are confro-

versial, most thermodynamic theories result in the general form

152
’

AGn = -n+kT-1n(y) - nO-kT-ln(x) + tkT-1n(n) + const (la)
(+]
C(n) = q,'n T yn (1b)

Thus C(n) = pre-exponential factoreexp[~(bulk term + surface term)/kT].

In "classical"” nucleation theory‘° one has T=0 and q =C(l)=concentration
of single molecules. The y-term comes from the bulk formation energy,

the x-term from the surface free energy (the leading correction excess

free energy, x <1 for positive surface tensions), and the physical
interpretation of the logarithmic and constant term in Eq. (la) are contro-
versial’ 7% 1In general the bulk term

y = exp(u-u__)/kT (2a)
and for ideal gas laws
- 2
Yy P/PCOGX ( )
where U and P are the chemical potential (per molecule) and the

pressur%ogf the vapor on the coexistence curve where liquid and vapor are
in eqyilibrium; u and P are the values in the (supersaturated) vapor.

The n” term in Eq. (la) arises from the surface area ( en , o<g<<l, for
spherical cluster 0=2/3), and the surface tension:

-n%T.1n(x) = (surface tension) - (surface area) 3)

which defines the dimensionless parameter x. It is widely accepted that

the surface tension of a bulk liquid is not necessarily equal to the surface
tension of a droplet containing, say, only 100 molecules. With the same
surface area, a difference of surface tension, say.15Z, will result in a
difference of nucleation rate on the order of 1017,

Most controversy centers on the logarithmic term and the constant
contribution to the formation efiergy in Eq. (la). Different values of _
T and q_ are derived from the statistical approaches of various models® 5,
The stafistical approaches have focused on the evaluation of the partition
function for an "embryonic 1iquid' droplet and the resulting prediction for
nucleation theory. The correction factors due to the rotational and
translational degrees of freedom for the small droplets’ give T = =4 and
q >> C(1). Many other results for T and q_ have been proposed“*S and no
geéneral agreement has been reached!!. °

Previous experimental reports!? !“(see Table I) have indicated that
nucleation rates measured for H,0, CH,0H, and C.,H_.OH are in good agreement
with the predictions of the classical theory, whefeas NH3, C6H6' CHCL3,
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and CCLsF are found to be in remarkably good agreement with the Lothe-Pound
theory. B This non-uniformity of results has furthered the controversy

with respect to the treatment of rotational and translational terms in the
free energy of an embryo. These terms give rise to a factor of 10! 7 in the
prediction of nucleation rates. However, it should be noted that the '
comparison between experiment and results of the classical theory and of

the comparison between experiment and results of the Lothe-Pound theory

has been made using the measured bulk surface tnesion for the liquid droplet.
As pointed out before, a 157 change in the surface tension of a small
droplet would affect the nucleation rate by a factor of 10! 7. Therefore,

a closer examination of the calculation of the surface temsion (or of the
surface free energy term in the formation energy of an embryo) for small
droplets is desirable. 1In section IV, we will examine the calculation of
"microscopic" surface tension in detail.

A computer simulation of small clusters should, in principle, give an
exact answer to all the controversial problems mentioned above, However, .
the usual microcrystalline approximations®’’ have considered only the :
intermolecular binding energy and the vibrational free energy for a given
configuration but neglected the anharmonic vibrational terms and the
configurational entropy. {For the same number n of molecules numerous
different "equilibrium" configurations exist, particluarly for liquid
droplets.) From molecular dynamics and Monte Carlo simulations of argon
clusters,7’8 vhich take into account such necessary corrections, one
observes that the droplet formation energy can differ by as much as 100 kT
from the microcrystalline harmonic approximation, givin§ a difference of
a factor 10 in the nucleation rate. Recently, Binder 5 has investigated
the thermodynamic properties of metastable states and nucleation process
in the lattice gas model by Monte Carlo method. Although this approach
provides an insight into the properties of metastable states, the lattice
gas model is unrealistic. .

In concluslon, the computer simulation approaches may provide accurate
information on the thermodynamic properties of a small cluster and the :
prediction of the nucleation rate if one makes a successful choice of
a suitable model. But, computer simulations are material-dependent and
they are complicated for realistic intermolecular potentials. Statisti-
cal approaches are based on more fundamental principles of statistical
mechanics. The controversies arise from the evaluation of the partition
function which is model dependent. Further investigation of nucleation
theory based on the statistical approach requires a well defined concept
of "physical cluster." Thermodynamical approaches are semi-phenomenolo-
gical, and thus avoid the complications of computer simulations and the
controversial problems of statistical approaches. A good thermodynamic
theory must be able to obtain accurate and correct parameters (such as
surface tension) either from basic calculation or from experimental
measurements to enable prediction of nucleation rate.

ansion cloud chamberi16 diffusion cloud chamber,!’ supersonic
nozzle, sand molecular beam®?® techniques are the experimental tools most
often used to check the critical supersaturation in various substances and
the nucleation rate as a function of the supersaturation. An excellent
critical review of various experimental measurements for different sub-
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stances of critical sugetsaturation for nucleation of liquids from vapor
was reported by Pound. ® In this review, Pound gives brief descriptions

of various experimental techniques and their limitations. Values of
critical supersaturations for homogeneous nucleation of droplets from the
vapor are tabulated and plotted. In addition to observing the limitations
of each experimental technique pointed out by Pound, one should also examine’
the impurities in the substance. From the study of "binary"“’22 and
"heteromolecular"? nucleation theory it can be seen that the impurity
factor will significantly change the values of critical supersaturation.

The authors would like to take this opportunity to inform the readers
that a series of books on nucleation theory, experiment and various
applications edited by A. C. Zettlemoyer and Kiang?" will be published
in the near future. The present status of the nucleation theory and
experiment will be discussed in great detail in these books,

IIX. ATMOSPHERIC APPLICATIONS

Selected topics of nucleation phenomena (cluster formation involving
ions will not be discussed here) and their roles in the atmosphere are
discussed in this section. In order to describe the roles of different
nucleation processes in the atmospheric applications, we separate our
discussions into two cases: relative humidity (RH) below 100Z and RH
above 100%.

For RH <100Z, the role of nucleation theory in the atmosphere is to
describe the initial stage of the atmospheric aerosol formation mechanism.
The mechanism of formation and growth of aerosols in the atmosphere can
be schematically illustrated by the phase transition block diagram (gas~
to-particle conversion, gas-to-particle interaction, and particle-particle
interaction) as shown in Fig 1. This diagram indicates all the reaction
mechanisms (represented by arrows) that govern the transition of gaseous
products (represented by boxes) into a solid or liquid phase.

For RH > 100Z, the role of nucleation theory in the atmosphere is to
describe the cloud droplet and ice crystal formation mechanism. The
mechanism of formation and growth of cloud droplets and ice crystals in
the atmosphere can also be schematically illustrated by the phase transition
block diagram II given in Fig 2. The application of nucleation to weather
modification and the mechanism for multiplication process of ice will not
be discussed here.

Here we would like to discuss the most dominant nucleation processes
for the aerosol formation (RH. <100Z) and cloud droplet and ice crystal
formation (RH > 100%).

A. Relative humidity below 1002

It is not possible to form water droplets homomolecularly under
atmospheric conditions of RH <100. Relative humidity greater than 4007
is required for the homogeneous homomolecular formation of water droplets,
and RH > 100% for the heterogeneous homomolecular formation of water droplets
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with impurities.25 Therefore, for RH. <100%, other nucleation mechanisms

. are needed to form a new aerosol in the atmosphere. In a complicated

system such as the atmosphere, several different gaseous molecules may come
together to form an aerosol. For a completely dust-free atmosphere ( or

near the "source" of those different gaseous molecules) homogeneous hetero-
molecluar nucleation theory is required to study the initial stage of aerosol
formation involving several gases. For an atmosphere containing conden~
sation nuclei or dust particles ("surfaces") we have a situation in which
heterogeneous heteromolecular nucleation theory applies.28 This hetero-
‘molecular nucleation may be the most dominant nucleation process of droplet
formation for an atmosphere with RH. <100%, since the nucleation threshold .
(required supersaturation) for heteromolecular nucleation can be much

lower than for nucleation with pure materials (homomolecular). Other
processes for the aerosol formation such as chemisorption, adsorptionm,

and surface heterogeneous catalysis will not be discussed here.

The formation of aqueous sulfuric acid droplets is a typical example
in which droplets can be formed in the atmosphere with RH far below 100Z
and activity (P/Pcoex. H,S0,, vhere Pcoex,H2804 is the vapor pressure over
the pure H,SO,) far less than one for sto . The concentrations of the
trace gases in the earth's atmosphere are measured in parts per million
or parts per billion. Heteromolecular nucleation requires gaseous constituents
with very low volatility; however, most of the atmospheric trace gases
have high vapor pressure and their concentrations are not sufficient to
allow heteromolecular nucleation out of the gas phase. Then chemical
reactions, combined with radiation or other energy input, are required
to produce reactants with low vapor pressure which then mix with water
vapors to form new aerosols (see Fig 1). The trace gas 802 has very
high vapor pressure (4 atm at 25 C). In the presence of water vapor and
oxidants, H,SO, may mix with water vapor and undergo heteromolecular
nucleation to form aqueous sulfuric acid aerosol.

For binary systems, with this heteromolecular nucleation approach,
we have studied the initial stage of aerosol formation for various poll-
utants??*26 (H $0,~ .ﬂO HNO,-H,0, etc. ) and the cloud-base levels for
Jupiter and Venus (NH3—H20 ZHZSOA_HZO HCL-HZO etc.).

In a ternary system, several distinct characteristics exist which a
binary system does not present (for detailed discussion, see ref 28).

Here we summarize those distinct characteristics as follows: (1)-the

nucleation rate for a ternary system is dependent not only on the relative

humidity but also on the composition of the other two components at a

fixed relative himidity; (2) in a ternary system, the effect of temperature :
on the aerosol formation is more significant,??; and (3) chemical reaction ;
is more likely to occur in a ternary system. No attempt has been made to

calculate the nucleation rate for a ternary system since there is not now

sufficient thermodynamic data available to carry out the theoretical study. .

Other problems associated with the study of heteromolecular nucleation
theory will be discussed in the next section. The only experimental :
measurement for heteromolecular nucleation study was performed by Flood
for ethyl alcohol-water mixtures;® ° the experimental results agree with
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theoretical prediction.27 Other exgerimental studies for stoa-uzo
and ethanol-water are in progress.®’

B. Relative humidity greater than 100%

There are three major phase transitions which can occur in the atmosphere
with RH > 100Z: the condensation of water vapor to droplets; the formations
of ice crystals from water droplets; and the formation of ice crystals
from water vapor. The development of the supersaturated state for nucleation
largely depends on the change of physical parameters such as pressure,
temperature, water concentration, etc., which is not like the situation for
RH <100%, where the development of the supersaturated state is largely
dependent on chemical (photochemical) reactions.

Heterogeneous nucleation on soluble droplets is responsible for the
condensation of water vapor to dropleta. In comparison with other nucleation
processes in the atmosphere, heterogeneous nucleation on soluble droplets
is the least controversial since most theories and experiments for this
process are in good agreement.25 There are two effects of vapor pressure
that must be considered in any treatment of the growth of droplets om a
soluble particle: (1) the solution effect; and (2) the Kelvin effect.

As mentioned in the previous section, vapor pressure changes over a solution
as contrasted to over a pure liquid (heteromolecular effect). For example,
the vapor pressure of water is less over aqueous solutions than over pure
water; thus one requires less saturation than expected for pure water.

Bagsed on the thermodynamic argument, because of the Kelvin effect, one
requires less saturation for the larger droplet. Therefore, from these

two effects, droplets in a cloud can grow much more easily than can droplets
undergoing the homogeneous nucleation process. A simple expression for

the relationship between the supersaturation for water, and the solution
effect and the Relvin effect may be expressed as follows' ?

1n(2/P ) = (2My/pRT)-(1/r) + ln(a) (4a)

coex,Hzo

where M is the molecular weight of water vapor, Yy the surface energy of
the droplet of solution, R the gas constant, r the radius of the droplet,
p the density of the droplet of solution, and a the activity of the sub-
stance dissolved in water as defined in the last section. If one assumes
that Raoult's Law governs the equilibrium vapor pressure over the solution
instead of the measured activity a, then the supersaturation can be
written as

im'M

(4b)
W(4/3mrp - m')]

P/P = exp (ZMY/pRTr){l +

coex,H20

where m' is the mass of solute, W the molecular weight of solute, and i the
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Van't Hoff factor for the degree of dissociation of salts. This treatment was
first used by Kéhler,®® modified by Wright,’* and re~examined by McDonald® ®
and Mason.?®

Here we would like to point out that this process of heterogeneous
nucleation on soluble droplets does occur in the atmosphere for RH <100%
for aqueous solution droplets, For droplet growth on soluble particles
involving solid phase, Eqs. (4a) and (4b) cannot be applied directly
because the production of a crystalline phase may require additional
supersaturation in the solution, An empirical formula was deduced by
Winkler® 7 to stuéy the growth law of atmospheric aerosols involving
"mixed particles' ® of soluble and insoluble particles.

In order to form ice crystals from pure water homogeneously, the water
must be supercooled to at least -40°c.3? Therefore, the majority of ice
crystals which form in clouds with temperatures much higher than -40° -
will be a result of heterogeneous nucleation. Depending on temperature,
pressure, water content, and available surfaces, three major mechanisms
are responsible for the formation of ice crystals in the atmosphere:

(1) immersion nucleation (nucleation of freezing by a particle immersed

in water); (2) deposition nucleation (nucleation of freezing by the deposi-
tion of water vapor on surfaces); and (3) contact nucleation (nucleation

of freef%ng induced by a particle during first contact with supercooled
water).

Most studies of ice formation by heterogeneous nucleation processes
derive from the basic concept of classical homogeneous nucleation theory -
a macroscopic~thermydynamic approach.25 Therefore, some weaknesses
of the classical nucleation theory, e.g., the use of bulk surface tension
values for microscopic nuclei, also occur in the study of heterogeneous ;
nucleation. Furthermore, because the nucleation of foreign surfaces !
involves an additional degree of freedom, e.g., the nature of the nucleating
surface, heterogeneous nucleation processes are more complicated to study
than are homogeneous processes, and additional problems have been encountered
such as the use of contact angles to describe equilibrium conditions for
an embryo on a heterogeneous surface, and the difficulty associated with
the treatment of the roughness of the surface. Detailed discussion of
problems associated with heterogeneous nucleation processes will be pre-~
sented in the following section.

IV. PROBLEMS ASSOCIATED WITH VARIOUS NUCLEATION THEORIES

In this section, selected problems associated with various nucleation
theories are examined in detail. For homogeneous nucleation theory we
ugse the Fisher droplet pit:t:urez"‘1 and measured values of the second
virial coefficient to determine the "microscopic' surface tension for
small droplets. The estimated "microscopic" surface tension can then be
used in the classical theory to calculate the nucleation rate. This
approach circumvents such controversial problems as rotational, translational,
configurational, and replacement partition function and gives excellent
agreement between experimental measurements and our theoretical calcu-
lations of the nucleation rates for various substances. For heteromolecular
nucleation theory we discuss the surface enrichment effect for a binary system,
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"microscopic’ surface energy and hydration effect on small droplets, and
their effects on calculations of the nucleation rate. For the formation

of ice crystals we present a model to study heterogeneous nucleation on a
substrate. This model gives an equilibrium concentration ( «exp[-AG/kT],
where AG is the free energy of embryo formation) without involving macro-
scopic thermodynamic parameters such as "contact angle,” etc. A general
approach for studying this heterogeneous nucleation process is qualitatively
discussed.

A. Homogeneous nucleation theory

As we pointed out before, the "microscopic surface tension" 1is one
of the most important parameters for studying nucleation theory. We
adopt the Fisher droplet picture for studying "critical phenomena" to
vapor-to-liquid nucleation theory of pure fields, and show how, from the
static equation of state, one can determine some parameters, e.g., 'micro-
scoplc surface tension," entering the theory of nucleation, a time-dependent
process.

Fisher's droplet picture for the gas-tc-liquid phase transition
phenomenon has been applied to study gas-to-liquid nucleation processes.
The parameters used in this model can be determined by experimental measure-
ment of the critical exponents.“® The validity of extending this model
from the critical point to the triple point has been examined by considering
the equation of state “®and condensation by impinging in a dense medium."

The agreement between this model and experimental data for the equation of
state 18 1% for water from the triple point to the critical point, and there
is no essential difference for different treatments of the impinging rate.
Here we would like to summarize the advantages of this model as follows:

(1) controversial problems, such as the rotational, translational, configura-
tional, and replacement partition function can be circumvented by use of

25429043

“this model; (2) this model covers a temperature range from the triple point

to the critical point; (3) the "microscopic" surface tension can be esti-
mated; and (4) the simplicity of this model means that it can be easily
adapted for practical research problems.

We now outline the Fisher droplet picture and the formulation of the
estimate of the microscopic surface tension for a small droplet. The free
energy of a liquid drop containing n molecules can be written in the general
form as Eq. (la), and the equilibrium concentration C(n) can be expressed
as Eq. (1b). With the assumption that the excluded volume effect between
clusters 1s negligible, the equation of state for the infinite system is
a generalization of the ideal gas resuls, P/kT = C(1) = N/V, to a mixture of
ideal gases with the components being the subset of all clusters with one
molecule, all clusters with two molecules, all clusters with three molecules,
etc, Thus the pressure of the system is

« © - xn yﬂ
P/kT =] C() =q [ n (5a)
n=1 n=1
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and the density of the vapor p = 3P/3u = [3P/31n(y)]1/kT is given by

o
p-anlTxn yn (5b)

On=1

Note that the critical point is defined at x = y = 1, where x = 1 defines
the critical isotherm (T = T ) and y = 1 defines the coexistence curve.
With Fisher's droplet picturg, the parameters T and 0 can be determined by
directly measur%d critical 17 ices [e.g., along the critical isotherm:

(O -p) c(u -W) = (u -u)1%: along the coexistence curve: (p -p) «

(T -T)——l = (T —T)B, where T ,p &nd u_ are the critical temperature, critical
density. and cfitical chemic§l Sotentigl respectively.] For water"® the
critical exponent 8 is found experimentally to be 4.3, giving a value of

T = 2,23, similarly, B has been found to be 0.35, resulting in a value of

C= 2/3 Due to the universal nature of fluid systems near the critical
region, 7 all the critical exponents for fluild systems have the same value,
Here we use T = 2,23 and 0 = 2/3 for our calculation of the "microscopic
surface tension.” The extimate of the microscopic surface tension can be
determined by evaluating ln x (see Bg. (3)).

From Egs. (5a, 5b), the compressibility factor is

g
P/pkT = (] n Txn v 1 ol T 7 (6)

Except near the critical region, for nearly ideal gases, n = 1 and n = 2
are the most important contributions to the compressibility factor. Thus,
along the coexistence curve (y = 1) Eq. (6) can be approximated by

g o
- -t 2
P/OkT = (x + 2 sz )/ (x + 21 Tx ) ¢))
Also, the compressibility factor can be expressed by the virial expansion

P/okT = 1 + Bp + Cp2 4 +oveeree (8)

where B = second virial coefficient, C = third virial coefficient, etc.
With 0 = 2/3 and T = 2,23 determined experimentally as mentioned above, 1In x
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can be evaluated from Eqs. (7) and (8). We obtain

- 1 -4.69(BPL (9)
In x = 5755751 T + 2(Bp)

The nucleation rate predicted by Fisher's droplet model is derived in
reference (2) and can be expressed as

3 = 25,0 (2 kD) |10 x| 377 fo Alﬂ"’[zzo[""—ri&giﬂll (10)

I'(x) 1is the Gamma function,

where P 1 S 1’ and m} are partial Bressure, surface area and mags of single
molecule, and A= (In y)/[1n x1*" (scaled supersaturation?). For G = 2/3
and T = 2.23 and small A, Eq. (10) can be approximated as

- .85 6. -2
3 = 3.4+R;5q (2mukD) ™ [10 x % 257 exp(-0.148 A7) an

The results of the ratio of the nucleation rate predicted by Eq. (11) to

that predicted by the "classical"” theory for several substances are presented
in Table II. Data for the calculations were obtained from Dawson et al.,
Jaeger et al.,13 and Katz and Ostermeyer. 1% vValues for the second virial .4
coefficient were either obtained from the compilation by Dymond and Smith

or calculated from the tables in Hirschfelder, Curtiss and Bird."

Note that for the substances listed in Table II, agreement between
theory and experiment is remarkably good, particularly in view of the extreme
sensitivity of the calculations to small changes in the parameters.

We might mention that the calculations for 1n(x) could be greatly
refined. For example, the third and higher order virial coefficients could
be considered, however, the calculations which we have carried out are not
intended to be more than order-of-magnitude estimates, given the lack of
precise data for vapor pressures and virial coefficients.

It should also be noted that the experimentally determined nucleation
rates may be imprecise due to impurities in the nucleating substance. This
leads to processes such as heterogeneous or heteromolecular nucleation or
both, which will greatly enhance the nucleation rate, and thus lead to experi-
mentally measured values of required supersaturation which would be much
lower than those required for pure homogeneous nucleation.

In conclusion, from our "microscopic" surface tension calculation,




517

it is our observation that classical nucleation theory can be considered

as adequate, provided the appropriate value of the "microscopic'" surface
tension is used. The discrepancy between the "classical" and the "Lothe-Pound"
theories may be due to the difference between the surface tension of a bulk
liquid and that of a small droplet.

B. Heteromolecular nucleation theory?!’?

To study the heteromolecular nucleation theory for a binary system, one
generally expresses the formation energy of a droplet consisting of n, water
and ny low-volatility reactant gas molecules:

AG = (ucA-uA)nA + (ucB-uB)nB + S(n,,np)Y(X) (12)

where U = chemical potentials of the two molecular speciles, if gas and

liquid §re in equilibrium over a flat mixture surface, U = actual chemical

potentials in the supersaturated atmosphere; S = surface area of the droplet,

depending on the number of molecules n, and ; Y = concentration~dependent

surface tension for the droplet; and X = n./(n ) :mole fraction. Again,

a closer examination of the parameter of surface tension for small droplets

is most desirable. As in the study of homogeneous nucleation theory, the

static thermodynamic equation of state (including the second virial coeffi-

clent) can be used to determine the '"microscopic" surface parameter in ;
sutdying heteromolecular nucleation theory for binary systems. Here the '
droplet consists of n, and n,. For a fixed mole fraction, X, there correxponds :
a given second virial coefficient, B(X). Thus, microscopic surface parameters ;
for small droplets can be estimated. A preliminary study5° shows that the

calculated microscopic surface tension can be 30 lower than the measured

bulk liquid surface tension.

Other problems associated with the study of heteromolecular nucleation
theory for binary systems result from the chemical properties of a binary
system in a small droplet, such as the surface enrichment effect and the
hydration effect,

A correct heteromolecular nculeation theory for binary systems must
take into account the fact that surface tension in general depends also on
the composition of the liquid droplet. For example, in an ethanol-water
solution, surface tension decreases with increasing ethanol concentration.
Furthermore, by the Gibbs adsorption equationf1 the concentration of the
ethanol molecules is stronger on the surface than in the interior of the
1iquid (surface enrichment effect) and thus the surface tension is less.
Recently, Stauffer et al.,5° have introduced a material independent con~-
tinuum theory to study the surface enrichment effect for the small liquid
droplet. In this theory, the variation of composition is assumed to give a
free energy contribution proportional to the square of the concentration
gradient. For ethanol and water, this treatment of the surface enrichment
for a small droplet provides a 42% smaller contribution of the surface
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energy to the formation energy of a small droplet. This continuum theory

has been tested by Monte Carlo methods for the lattice gas model®® and the
agreement is good. These surface enrichment effect correction calculations
have included both the spatial composition variation and the curvature

effect for small droplets, Taken together with the "microscopic surface
tension" consideration estimated from the second virial coefficient, one may
speculate that of the 427 smaller contribution, 30% may be due to the curva-
ture effect and 12% may be arrived by the spatial composition variation. For
an ideal binary system the surface enrichment effect is not important, but
for systems like ethanol-water, NH,-H,0 and H 504-H20 the surface enrichment
effect needs to be examined. An agdigional egfect that should be considered
when studying the heteromolecular nucleation process involving H,SO,-H '

is the hydration effect in the liquid mixture droplet. Heist and Reis§>® have
recently constructed the free energy surface for a droplet containing n
water molecules and H,SO, molecules. In their study, the surface predicts
the existence of stable ﬁ 564 hydrates in the vapor phase and the number of
hydrates has been calcula%ed for different relative humidities. Shugard

et al.,%"* extended this study of hydration effect to heteromolecular nucleation
for the binary system H280 -H,0 and found that a finite nucleation rate is
predicted with a relative éumidity of 50X and H2804 vapor activity of 10 °.
This result gives a nucelation rate higher by a“factor of 10° than the
previous calculations made without considering the hydration effect.?!™® No
correction for surface enrichment and curvature effect were included in any
of these calculations. The hydration effect for a relative humidity much
greater than 100% would be more significant for the study of nucleation.

C. Heterogeneous nucleation on substrate

The simplest case for the study of heterogeneous nucleation on a sub~
strate is to consider an ice embryo in the form of a spherical cap forming on
a plane solid surface. Here we briefly review the basic approach (classical)
often used to study this nucleation process and discuss the problems asso-
clated with the parameters entering into the calculation of nucleation rate.
In classical rucleation theory, the nucleation rate is contributed by the
product of the kinetic coefficient and the exponential function of the free
energy of formation of a critical embryo on the nucleating surface (exp -
AG*/kT). The free energy barrier (AG*) for the formation of a new phase is,
in general, in the order of magnitude of 4O0kT or more, which gives an exponen-
tial factor on the order of magnitude 10 ! ®or smaller. A 102 change of
AG* will give a change in the nucleation rate of two orders of magnitude.
Therefore, AG* is a more sensitive parameter for studying the nucleation rate,
and our discussion will be largely devoted to this quantity.

The free energg of formation of an embryo on a plane solid surface is
usually written as °°

86 = 86, V) + Yy5815 + (Y237Y13)553 3)

where AGl2 is the free energy difference (per unit volume) of phase 2 between
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matter in state 1 and matter in state 2, Yyq is the surface free energy of
the interface between phases i and j, V is 1he volume and S is the surface
area. The cap dimensions can be specified in terms of the radius r and the
contact angle 6 (see Fig 3). The contact parameter m = cos € '(Y13-Y23)/Y12
18 used to determine the free energy of a critical embryo as follows

3 2
AGk = (417Y12/3AG12)- £ (m)

£m) = 2 +m (1-m? (14)

Thus the essential parameters for the free energy of a critical embryo are
the surface tension Y., and m. Other nucleation processes, such as deposi-~
tion nucleation on insdluble particles, and contact nucleation, are based
on this approach to determine the free energy of an embryo.

Most calculations of nucleation rate have used the bulk thermodynamic
properties, such as the bulk liquid surface tension and the contact parameter,
for the evaluation of the free energy barrier. At this point, we would
like to point out a serious defect in this approach for studying hetero-
geneous nucleation theory. First, the use of bulk liquid surface tension
for the surface free energy of a small cluster is not well justified.

Again, a 10X difference in the estimation of the surface tension v,, will
give a 302 change in AG*, which can lead to a change of the nuclea%ion rate
of seven or more orders of magnitude. Secondly, the height of a critical
embryo above the nucleating surface is, in general, about 10 A or less,

vhich corresponds to a thickness of few molecules. Thus the concept of
contact angle applied to the study of heterogeneous nucleation on substrate
is ambiguous. Even though there are experimentsss in good agreement with the
theoretical predictions, one simply cannot take this theoretical interpre-
tation too seriously before a closer examination of these parameters has been
made.

Here we would like to propose a model for the study of heterogeneous
nucleation on a substrate to clarify some of the ambiguities mentioned above.
Binder and Hohenber357 recently have derived a cluster model, based on Monte
Carlo calculations, to study the surface effects on magnetic phase transi-
tion. In their cluster model, the free energy for the formation of a surface
cluster (a cluster that touches a free surface) can be expressed as

AGn = ~n+kT*In(y) - nc'kT-ln(x) + chl-nol + T'ln(n) + comst (15)

where the first two terms are exactly the same as the first two terms in
Eq. (la) which corresponds to the first two terms in Eq, (13); the third
term describes the interaction of the interface between the surface cluster
and the touched surface which corresponds to the third term of Eq. (13).

(h, is the field and ¢ is a constant.) The logarithmic and constant terms
are the correction due to the configurational entropy, vibration contribu-
tion, etc., which are analogous to the last two terms in Eq. (la) in the
bulk. Here 0. <0 <1, and 0..<0; <1, for spherical cluster ¢ = 2/3 and
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o1 = 1/3, The advantages of this proposed model are that (1) it is simple,
semi-phenomenological and easily applied to practical research problems; (2)
it is general (the model includes the entropy corrections and other possible
contributionsy and (3) it avoids the bulk parameters such as surface tension
and contact parameter,

To determine these parameters (0,0;,T',x,ch,) used for the nucleation
study, the experimental data of the correctly chosen thermodynamic properties
can be used. For example, 0,01, and T' can be determined by the critical
indices, and x can be determined by the second virial coefficient as demon-
strated in the previous sections. T}73pa;i’§ter c is a geometric constant
and it can be approximated as (3/4m) . where V_ 1g the volume per
molecule. The determination of h, is relatively a new approach and we would
like to discuss the background coficept in the following paragraph.

Similar to the method for determination of "microscopic surface tension”
by using the virial coefficients for homogeneous nucleation theory, the
second gas-solid virial coefficient B g cam be used to determine the interface
interaction parameter hl. st is defzned as

8,, " [v' exp(-W,/kT) dF, ; W, = wl(il,{u s}, T) (16)

where W. is the potential of average force for a single adsorbate molecule
interac%ing with the adsorbent and” {u_} 1s the set of chemiecal potentials
of the adsorbent. Since the potential of average force constitutes the inter-
action energy of the adsorbate molecules as the sum of all interactions with
the molecules of the adsorbent averaged over all allowable configurations

of the adsorbent molecules, the second gas-solid virial coefficient B s

does implicitly contain the information of the interface interaction para-
meter h., (the energy parameter generated by the interaction between the
adsorbeiit and adsorbate molecules). To obtain more accurate information on
the interface interaction h,, higher order gas-solid virial coefficients

are needed, e.g., B,, which contains the average interaction between two
adsorbate molecules and the adsorbent molecules. For a nearly ideal gas

the interaction parameter h1 can be obtained from the following equation

st = nadskT/P a7

where n d is the number of moles adsorbed and P is the bulk pressure.
A detailed expression for h, can be obtained from the above equation with
approximations similar to t%ose of Egqs. (6) and (7)

C 01 1 g
By, ™ e(xz + x* z2 2"y / (x+ x* 2h) a8
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where z = ln(chl).

Most experimental data of B, are reported for inert gases and organic
gases on carbon.®® WNo quantitative calculation for the determination of

has been made because there 1s no experimental measurement of B, avail=-
a%le for studying the heterogeneous nucleation on substrate. It i8 our
recommendation that such experimental studies (e.g., apply gas chromato-
graph to obtain B, for water on Agl) should be performed for the determin-
ation of the intefface interaction parameter h.,., Other approaches involving
the available thermodynamic quantities (such a8 the isosteric heat of adsorb-
tion and adsorbtion isotherms) to evaluate the interface interaction parameter
have been studied for the interaction between water vapor and pure silver
iodide in the vicinity of saturation.®® This new approach which applies
other related thermodynamic properties to the determination of the inter-
face interaction parameters and which avoids the usual approach by using
the bulk liquid surface tension and contact parameters may provide a better
ingight for the study of heterogeneous nucleation.

V. CONCLUSION

There is little doubt that the nucleation processes play a significant
role in the study of atmospheric sciences. For relative humidity below
100%, the heteromolecular nucleation process gives the mechanism for the
initial stage of aerosol formation. If the role of aerosols in-the urbam air
and in the stratospheric atmosphere is to be understood fully heteromole-
cular nucleation processes cannot be neglected. Foﬂrelative humidity larger
than 100%, the heterogeneous nucleation processes (either on soluble or
insolbule particles) are the dominant mechanism for the formation of cloud
droplets and ice crystals. While the significance of the study of nucleation
phenomena in the atmosphere appears to be fairly well recognized, the basic
theory for various nucleation processes is not well understood. For the
study of homogeneous nucleation theory, a new approach for the determination
of the parameters entering in the calculation of nucleation rate is presented
and the theoretical predictions are in good agreement with the experimental
measurements. Thus we suggest that classical nucleation theory can be
considered as adequate, provided the appropriate value of the "microscopic"
surface tension is used. This approach has been extended for the study of
a heteromolecular nucleation theory for binary systems and of heterogeneous
nucleation on a substrate to determine the parameters used for the study of
nucleation theory. To confirm the theoretical prediction it would be desir-
able to obtain more experimental measurements for the necessary thermodynamic
parameters and nucleation rates.
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Fig. 3 Heterogeneous Nucleation on a Substrate : Embryo 2 on Nucleating
Surface 3 in Parent Phase 1, where r is the radius of the embryo
and 0 is the contact angle.



528

TABLE 1

Ratio of nucleation rates measured experimentally

to nucleation rates predicted by classical theory

Substance

H,0
CZHSOH

Collg

' CHC1

§ CCL,F

Comparison of ratios of nucleation rates

Jegg / Jclass
10*
10°
1012
108
1018
1ok
TABLE II
(J: calculation from "microscopic"” gurface
s = P/Po J/Jclass Jexp/Jclggg_
2.58 10t 10*
1.4 1078 10°
7.39 10% 10°
2.8 101! 10t?
100 10® 108
3 1012 10t8
5 1017 10

tension)

Substance Temp(oK)
HZO 323
CH30H 313
CZHSOH 313
NH3 240
C6H6 230
CHCl3 323
CCl.F 240



529

CURRENT METEOROLOGICAL THEORY OF DROP GROWTH
BY CONDENSATION AND SOME COMPARISONS WITH EXPERIMENT
J. C. Carstens
and
J. M. Carter

Physics Department and Graduate Center for
Cloud Physics Research
University of Missouri at Rolla

ABSTRACT

A review of the current meteorological theory
of droplet growth is presented. Some comparisons
with experiment are exhibited, and good agreement
18 found. The theory is presented so ae to
emphasize ite logical development from basic
physical ideas. It i8 cast into a very simple form
which can be used to reveal the eimilarities of
various other forme appearing in the literature.

A few special formulae are displayed which are
useful in certain practical applications. Some
implicatione of the theory regarding size distri-
bution broadening are diecuessed. The theory is
compared with measurements of the growth of water
drops in the one-half-to-ten micron gize range
which were made in Argon and air by laser scatter-
ing techniques. Scattering from a He-Ne (6328 1)
laser off of drope produced by homogeneous nuclea-
tion, and thereafter grown at supersaturation ratiose
ranging from about 1.2 to 3.6, wae compared with
the Mie theory predictions and radius vs. time
curvee deduced. Generally good agreement was
found between the conventional theory of drop
growth and experiment. The theory was fit using
one parameter involving both condensation and
thermal accommodation coefficients.

INTRODUCTION

The present treatment of dropwise condensation (or evapora-
tion) is divided into two parts: (1) the theory is presented
as it is normally used by atmospheric scientists, that is in
application to clouds, and (2) a brief comparison with experi-
ment is limited to cloud chamber work performed by J. Carter in
the UMR Cloud Physics Center. :

In (1) the emphasis has been a step-by-step exposition of
the basic theory rather than on the history of its development.
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It perhaps should be mentioned at the outset that the equations
describing growth are subject to various simplifications
peculiar to their atmospheric application. One of the most
important of these resides in the fact that at any given time a
cloud droplet generally exberiences a very small supersatura-
tion. "Final" equations have generally been written with this
simplification in mind, and appropriate modification must be
made for larger supersaturations (or undersaturations).

GOVERNING EQUATIONS

In treating cloud droplet growth it is perhaps most practi-
cal to adopt the macroscopic point of view and write down the
continuum equations governing the growth or evaporation process.
In doing so it is assumed that the drop diameter is rather
greater than a mean free path. This regime usually covers cases
of interest in cloud physics, and is amenable to extensions into
the ''transition" regime.

Briefly, the process of growth involves the transport of
mass (vapor) toward the drop, release of latent heat at the
drop surface, a subsequent heating up of the drop, and as a
consequence of the latter, a thermal energy transport away from
it. The continuity of water vapor concentration, n (moles/vol.),
outside the drop may be written:

T on
V'I = -ﬁ (1)

<>
where I is the molar flux of vapor given by,

+ -(n+n_)D x>
I = _n—)%— [Vx + o' (x)VInTl+yZol, (2)

Here x is the mole fraction of vapor, n the vapor molar con-
centration, D the diffusion coefficient of water vapor in air,
T the temperature field (governed by a corresponding equation),

1 the molar flux of air, n_ the molar concentration of air,
and a'(x) the thermal diffusion factor.

Considerable simplification of this equation is justified
for normal atmospheric situations. Water vapor is a dilute
solute in the atmosphere, so that the term n/ng can be neglected
compared with unity. [This corresponds to neg%ecting Stefan
flow, (Fuchs 1959)]. Thermal diffusion and its inverse are
small enough to be neglected (Neiburger and Chien, 1960). The
motion of the air relative to the drop is almost always ascri-
bable to drop fall, and v_ can be inferred from the Stoke's
law velocity. g
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This effect is negligible up to about 10 microns (Squires, 1952).
Beyond this size the effect of fall can be incorporated semi-
empirically (Frossling, 1938; Squires, 1952) by a ventillation
factor which multiplies the diffusion coefficient. It is usually
a minor correction inasmuch as its effect on condensation drop
growth is most pronounced when the latter is no longer the
dominant growth mechanism. [According to Squires D or K can be
multiplied by the approximate factor,

1+ 0.24 /Re, (3)
where Re is the Reynolds number].

With the above simplifications the flux equation reduces to
one of simple diffusion,

pvlp = 32, (4)

where p is the vapor density and D is regarded as constant.
Arguments similar to the above apply to heat conduction leading
to

kvit = cL (5)

where k is the thermal diffusivity of the air-water vapor mixture,
or simply that of air. Three of the four boundary conditions
required to specify the solution can be written down immediately.

p(=,t) = p (1) (6)
T(=,t) = T_(t) )
ar
4ma’ik 3L 4 10 28y = caca)o (8)

where p and T_ are bulk values of the vapor density and tempera-
ture (wﬁich can be functions of time), a the drop radius, K the
thermal conductivity of the gas, L the latent heat of condensa-
tion, and Cd(a) the heat capacity of the drop which is to good
approximation characterized by the uniform temperature T,.

Fuchs (1959) has shown that heat loss by radiation can bg neglec-
ted for the size range here contemplated. (Discussion of the
third boundary condition is deferred).

The final simplification invokes the idea of quasi steady
state. It is based on the assumption that the transients appro-
priate to the diffusion problem are small enough so that the
steady state profiles "follow" the outward motion of the drop
surface. The transient regime is discussed by Carstens and
Zung (1970), Nix and Fukuta (1973), and the use of quasi
steady state criticized by Kirkaldy (1958).
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With the above simplifications the flux equations reduce
to:

vZ = 0; (9)

viT = 0. (10)

and

The notion of quasi steady state does not rule out the possibility
that o and T_ be slowly varying functions of time in (6) and
(7). Condition (8) becomes simply,

dT dp -
K IF|r=a * LD 3¢ rea 0. (11
The steady state solutions to (9) and (10) are:
p=F (P 05) *+ po (12)
and
T=2(r,-1T,) +T,. (13)

These solutions, incidently, are never attained since it would
take an infinite amount of mass (and heat) to establish them.
The solutions are necessarily poor far away from the drop. The
validity of the quasi steady state approximation resides (in
part) in the fact that the '"correct" solutions are achieved very
quickly near the drop and, even though the drop derives the bulk
of its mass from remote regions, its actual growth rate depends
on the gradient at the drop surface.

Finally, the presumably slow outward motion of the drop
surface reintroduces time into what would otherwise be a
steady state process (hence "quasi' steady state). This
"growth" equation is:

da _ D dp
It = 5; af|r=a (14)

where Py is the liquid density.

Two somewhat different treatments of the growth process
exist in the meteorological literature. Both are based on the
above assumptions. They differ in that the most common approach
assumes that the transport process is entirely controlled by the
diffusion of mass and conduction of heat, while the alternate
approach posits the possibility of additional control exerted
at the liquid-vapor interface. This difference appears in the
final boundary condition at the drop surface.
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DIFFUSION CONTROLLED GROWTH

In what is perhaps the most common treatment of drop
growth (Fuchs, 1959; due to Maxwell), it is assumed that to
good approximation thermal equilibrium between vapor density
and temperature holds at the drop surface. In addition to its
dependence on temperature, the dependence of thermal equilibrium
both on drop curvature and dissolved salt often must be taken
into account. We can write this radial dependence formally
‘in terms of a saturation ratio,

s Pegla,mg,T) 15

sat * p_TEOTT) (15)
where p_ _(a,m_,T) is the equilibrium vapor density over a drop.
of radifi% a afid dissolved salt mass m , and Pe («,0,T) is that
over a flat, pure surface. We therefdre have®9the equilibrium
condition:

Peq(@:mgsT) = S ¢(a,m)peqy(=,0,T).

The temperature span involved in the applications is ordinarily
sufficiently narrow to justify a linear relationship between

p.. (»,0,T) and T, so that the final boundary condition can be
w¥ftten:

peq(a,Ta) = (bT +c)S .. (16)

The constants b and ¢ can be (and usually are) obtained by
keeping linear terms in a Taylor expansion of the Clausius-
Clapeyron equation about T,.

The condition (16) completes the problem and leads to the
growth equation:

da _ Peq(®) (8-S, (a)]
aa? % R %_ N (17)

where the liquid density is unity. Here we can identify the
numerator as the "driving force" and the denominator as a
"resistance' composed of mass and thermal components. For
constant ambient conditions, and supersaturation ratio, S,
close to unity, a solution is:

_ 1 a(t)x dx
€2 - Deffpeq(wl/ﬂ 5552t (X) (%)
™
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where
1 <1, bL (19’
Dege D °F ‘

.

For temperature at about 3° C, the thermal '"resistance",
E%, begins to dominate growth. This can be seen by splitting

the time in (18) into two parts, one associated with the
thermal resistance. With t=tp+tT, we have:

a(t)
¢ =DbL 1 x dx (20)
T —K pe ]co, s-s
q a sat
o
a(t)
=1 1 x dx ,

%D Peql™) S-S5at (21)

a
(o]
At 3°C the ratio tp/t, is about 1, at 30°C nearly 4.

Finally it should be pointed out that S.at(3) is usually
identified with the Kohler curve:

Am
®
Sap(a) = 1+ r—a-— —a-§ (22)

where r* is a constant obtained frgm the Kelvin-Thompson equa-
tion (curvature effect) and mS(A/a ) from Raolt's law. Deriva-

tion and discussion of the Kohler curve may be found, for
example, in Fleagle and Businger (1963).

GROWTH CONTROLLED BY DIFFUSION AND SURFACE KINETICS: DIFFUSION-
KINETIC APPROACH

In the previous development it was assumed that drop growth
is controlled both by the rate at which vapor molecules are
transported to the surface by diffusion, and the rate at which
thermal energy is removed from the surface by conduction, This
transport process can obviously be affected if, in the first
case, vapor molecules do not always stick to the surface upon
striking it (or are inhibited from evaporating), and, in the
second case, if the gas molecules on the average acquire some
reduced fraction of the surface energy upon collision. These
possibilities naturally lead to a consideration of coefficients
of condensation, evaporation, and thermal accommodation.

The thermal accommodation coefficient, a, can be defined as:
Bi'Er

= (23)
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where according to Kennard (1938) E; denotes the energy brought

up to unit area per second by the incident molecular stream,
Br that carried away by these molecules as they leave the wall

after reflection from it, and E, the energy that this latter

stream would carry away if it carried the same mean energy per
molecule as does a stream issuing from a gas in equilibrium at
the wall temperature Tw‘

It is perhaps timely to discuss the evaporation and con-
densation coefficient in the context of water drops that may
possess impurities, especially as such considerations may be
important in cloud physics (Bartlett and Jonas, 1972). The con-
densation coefficient can be taken to be the fraction of incoming
vapor molecules that strike the surface and stick to it. The
evaporation coefficient may be defined relative to the conden-
sation coefficient as the fraction of molecular flux that would
emanate from a pure surface at the same temperature (this being
the condensation flux under equilibrium conditions at that
temperature). A relative condensation coefficient may be
similarly defined. The following simplified illustrative model
may serve to fix these ideas. Consider a water surface upon
which condensation (or evaporation) occurs. Let us for the sake
of argument evaluate the fluxes involved from uniform (ideal)
gas kinetics. For pure water (superscript zero) the flux is

100) - 175 () non, () + § 100

or 8 (0)
I(°)(1--57——) = % v Bcco)[n-neq(°)]- (24)

Here Bc(o) is the condensation coefficient for pure water, Vv the

average molecular speed, n the actual water vapor molecular con-

centration, and n (0) the equilibrium concentration at the sur-

eq
face temperature. The factor 1(°)/2 accounts for the fact that
the condensation process itself establishes a net flow of vapor
toward the surface which is not accounted for by kinetic term
alone. Next, consider the surface of '"contaminated" water. From
a purely phenomenological point of view the condensation and/or
the evaporation flux could be altered. The condensation term

may be changed to

Be 1207 8. (0,

1] t
where BC is the relative condensation coefficient, o<Bc gl/Bc(o).

Likewise the evaporation flux can be affected; that is the flux
that would ordinarily evaporate off a pure surface is changed by
a factor Be (evaporation coefficient), i.e.,
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Bé [% neq(O) v BC(O)]'

Hence:
(o).’ (@),' = '

1(1-BC BC ) - SC BC v [ -Be a (0)]
Y] 4 n B' eq
c

The new equilibrium "position" is,
(25)
and the shift in equilibrium,

—n (0) ' g’
neq,neq Be —B¢

o " (26)

Req

In terms of the displaced equilibrium,
ge 8. |
1(-——S—)= Y8, 8 () (n-ngg) (27)

t
with Be Bc(o) the condensation coefficient for the contaminated

surface. This illustration is only meant to define these
coefficients in such a way as to correspond with common sense.
Clearly the kinetics of the process, that is the rate at which

equilibrium approached, is affected by the condensation coefficient

(Bc=8é Bc(o)) alone, while the shift in equilibrium obviously
t 1
requires a difference in 8. and B, .

In the case of drop growth the introduction of possible
surface control requires that the thermal equilibrium boundary
condition (16) be replaced by mass and heat fluxes. The
simplest technique, and that usually found in the meteorological
literature (Langmiur, 1944; Fuchs, 1959; Carstens and Kassner,
1968; Fitzgerald, 1970; Fukuta and Walter, 1970) consists of
equating the molecular and energy flux determined from uniform
gas kinetics to that calculated directly from Fick's and
Fourier's law. This flux matching is done at the drop surface,
or in the vicinity of a mean free path of it (Fuchs, 1959).
This approach has been dubbed the "diffusion kinetic" by
Smirnov (1971). A very thorough exposition of it is that of
Fukuta and Walter (1970).

Using this approach, the mass flux equation around the drop
is given by:
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dp = 1 = D dp
DIr|r=a = 7fa V(Ta)Bc(Ta) *7ar r=z;1‘3c(T )

Peq(Ta) ¥ (Tg) B (Tg)

Here BC is the condensation coefficient, Ta is the temperature
of the gas adjacent to the drop, Ty that of the drop itself,

and v the average molecular speed at the temperatures indicated.
The addition of half of the Fickian flux on the right hand side

rests on reasoning similar to that given in connection

with equation (24). (The consistency of adding such a term

is perhaps more easily seen away from the surface. In a uniform
gas the number of molecules traversing an imaginary plane is

Inv in one direction and znv in the other; the net flux is of
course zero. If there is known to be a flux DF— in the gas
then the uniform flux calculation can be made to produce it if,
to %nV, one simply adds -%D 9n/8x.) We next neglect the
intrinsic temperature dependence of Bc to get

V(T,) [ B, ['ra JTQ
r=a = — & (_'"B;C) [pa . peq(Td) T,
1-

The narrow range of temperatures also justifies the simplifying

approximation,
Tq v T, v 1.
VooV

The approximate 'connection'" equation is:

pde
Dg>

- B
pde =1y _¢ -
Darlr=a " TV B Loy peq(Td)]‘ (28)
1-—

From the solution (12) it follows that,

a

pm+fg peq(Td)

Py = —————, (29)
1+a/2.3

where, following Fukuta and Walter (1970) we have introduced
the length 2g»
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b = 2, (30)
v
and where
8 = 5 (105 (31)
c T

The departure from equilibrium is,

Peq(Tg) P
peq(Td)-pa = _33__2____, (32)

1+a/£B

and its magnitude is determined by the value of a/!.B relative
to unity.

As exemplified by eq. (32), the diffusion-kinetic model is
constructed so that it is valid in the opposite limits of free
molecular flow (Kn>>1) and continuum flow (Kn<<l). It may

thus be regarded as an "interpolation' covering the inter-
mediate regime bounded by these two extremes. Smirnov (1971)
(see also Shankar, 1970) discusses the degree of approximation
achieved by this interpolation through the regime of inter-
mediate Knudsen number. However, the chief merit of the model,
at least in most cloud physics applications (Rooth, 1957),

lies in its incorporation of surface effects via the condensa-
tion and thermal accommodation coefficients. If B (and/or a)
is sufficiently small compared with unity, significant surface
control can extend well into the continuum regime -- a regime
where the theory purports validity. The smaller either or both
of these coefficients, the more important it is to ascertain
their values, since they represent a tendency for surface
control to be the rate determining process. Kn/B and Kn/a

are the important numbers here, and as implied by eq. (32)
they have to do with the validity of assuming the thermal
equilibrium; Kn itself of course pertains to the

validity of using Fick's and Fourier's laws. If o and 8

are near unity the distinction is unnecessary, but in this case
growth through the regime of intermediate Knudsen number is
sufficiently fast that one is usually justified in using the
simpler approach [that is, eq. (17)].

The actual magnitude of the sticking coefficient appears
to be the subject of some controversy (see for example Mills
and Seban, 1967; Jamieson, 1965; or Amelin, 1966). Values have
been measured (Alty and Mackay, 1935; Vietti and Schuster, 1973;
Carter and Carstens, 1974;) that would not be insignificant in
cloud physics applications (Fitzgerald, 1970; Warner, 1969).
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In evaluating the energy flux around the drop we will
follow the analysis of Kennard (1938), appealing to the same
sort of assumptions invoked in evaluating the mass flux (the
calculation is done for air):

dT v v K dT
XIr|r=a ° a[-_%ng(Ta)(Etr+Ei)'7 dr|r=a

V A 1]
+"§ ng(Ta)(Etr+Ei)]
Eir is the translational energy of the incoming meclecules and
1] t
Ei is their energy other than translational; E.r and E; are these
quantities for the outgoing flux. The average translational

energy of the molecules in a molecular stream is given by:
<dav?> = 33k,

The following identifications are made:

|
Eip = ZRTa and E.. = 2RT,.

This puts n_ in moles/cms, and (1/4)n v in the moles/cmzlsec,

so that the energy flux is in cal/cmz/sec (R is in cal/°K mole).
Then,

aT o v.n (T)a ) '
“Kaplr=a(1-7) = _&—5_____[2R(Td T )+E;-E4l-
Now for an ideal gas
. AU _ 3 AE
Ch"sr=R*ar
where C_ is the molar specific heat at constant volume.
Putting"AT=T;-T_ and AE=E;-E; gives:
] C 3.
Ej-Ey = (C-7RI(Ty-Ty).

This leads to:

S =(1°‘%) lealy R (Yj ) (T4-T,) (33)
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where y is the ratio of specific heat at constant pressure
to that at constant volume. Using the solution (13) a result
analogous to (29) is obtained:

T, = (Tw-t-;:Td)/ (1+a/2,) (34)

where, again following Fukuta and Walter (1970), we introduce
the length Lyt

- v-1,,1-a/2, /=
b, = 8K GO /A Ry

The well-known phenomena of ''temperature jump" (Kennard,
1938) is given by,

Tg-T, = (T4-T,)/(1+a/2.), (35)

which is analogous to eq. (32).

Now equations (34), (29), and the condition for thermal
equilibrium, along with the usual - boundary conditions (11)
(6), and (7) comprise the required six conditions to solve
for the six "constants" Ta’ Td’ Pa>» peq(Td), p,» and T_. It

is quicker, however, to exploit the idea of "compensated"
coefficients (Fitzgerald, 1970; see also Carstens, 1972).

Here the formalism of the simpler theory is retrieved

by "compensating' the coefficients as they appear in eq. (17)
in such a way that the growth law includes the above surface
effects. In what follows the simpler theory is referred to as
the Maxwell Theory with subscript "M".

The flux computed from the diffusion-kinetic theory is,

Ipk = D(°a°pm)§7‘ (35)
We write the Maxwellian flux as,
Ty = D' (2) [pgq(Ty) el 2y, (37)
where, if IDK and IM are to be equal,

® -
p* _ Pafe

D peqtlaj~pw.
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It is easily shown directly from eq. (29) that,

* Pa P

= = -1
Peq(Ta) Pa (1+2g/a)

This, as Fukuta and Walter demonstrate clearly, is the key
manipulation that causes the linear theory [i.e. based on a
linearization of the thermal equilibrium condition, eq. (16)]
to have such a simple form.

UlU

Clearly,
* D
D (a) = (38)
|+§,B7a
and, analogously,
* . K
Ka) = mi7e | (39

Now the compensation of K and D insures that the flux is calcu-
lated so as to satisfy conditions (28) and (33). But the power
balance, eq. (11), and growth eq. (14), in fact involve only
flux terms. Therefore the Maxwellian approach gives the growth
law, eq. (17), "correctly" with D and K compensated, i.e.

a%% i} Def;(a)pgg)(“)lS°Ssat(a)] (40)

where

—_—x * wx— t -

Deff D (a) K (a)
(Ssat(a) has here been assumed sufficiently close to unity to
justify putting bS_.2bin Deff)‘ It is easy to establish

sat
an equivalent form, resembling that of Rooth (1957),

1 1 bL (41)

(a+2)g% = Deffpég)(m)ls'ssat(a)]’ (42)

where £ is a weighted average of L and 25:

L
b=k o, By D, (43)

. * -
It is also clear that, Deff = Deff(1+2/a) {
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Four contributions to the "resistance" may be identified
[refer to discussion in connection with equation (19)1,

e 1}
_1,.bL,1% bt
R=p*x*p32*T= (44)

The last two represent the mass and thermal contribution to the
surface resistance. At a given temperature the single parameter
2 suffices to account for surface effects. The slope b, how-
ever, is responsible for an increasing thermal weighting toward
£a as temperature increases. (From the Clausius-Clayperon

equation;
b ¥ p(g‘)q(w)ML/RTmz) .

Thus a low value of B, for example, will have more of an
effect at lower temperatures than at high. This effect exists
aside from any intrinsic dependence of B or a on temperature.
As mentioned in connection with equations (20) and (21) the
weighting is about equal at 3°C and nearly fourfold toward

za at 30°C.

SOME SOLUTIONS

" Although (40) or (42) is usually solved numerically
(e.g.Brown and Arnason, 1973), a few solutions may be helpful.
For constant ambient conditions,

a
1 x+£)dx
t(a) = RO S f 5'(’5_)"(1' (45)
peq eff a, sat'* ’

which with Ssat(x) given by eq. (22) can be solved by conven-
tional integration (Carstens, et al, 1974).

If the maximum value of Ssat’ that is the critical supersatu-
ration Sc’ exceeds the applied supersaturation, S, then growth

is inhibited, and the radius approaches a stable-equilibrium
value, ag, corresponding to the smallest positive root of

S-Ssat(a)=0. If S is not too close to Sc’ a rough idea of the
relaxation time corresponding to the approach of a to a, can be
obtained by linearizing Ss;t around ag (Sedunov, 1972}, the
argument being that if the drop attains a radius near a  the
bulk of its growth time 1is spent in this vicinity. Substituting
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dssat

Ssat(a) = Ssat(as) * Iz as(a_asl (46)
into eq. (45) gives,

a(t) = ag+(a -a.)exp(t/1),

with
—(ag+y) dSsatl -1
T(S) = (O) da as] . (47)
Deffpeq (=)
At S=1, using the Kohler curve, eq. (22):
Amg
—Amg (2+ Y ==
t(1) = EPNETY: (48)
0) (e T
2Deffpeq (=)

At 17°C with a=1, B=.036 we have £%1.65u; then for ms==10'15 gms,

t(1)~1 sec, and for ms=5.8x10'13 gms, r(l)mlos.

For large drops where Ssat(a)xl and a>>%,

ne

a [a°2+2neff(s-1)pgg)(w)t]*. (49)

From eq. (42) it is clear that surface effects alone (Ssatgl)
can be taken into account by rescaling the radius:

ath = [(ag#+2f+2D g (5-1)0{2) (=) 11%. (50)

If curvature and surface effects are small perturbations they
can both be included by replacing £ by f+r*/(S-1). -

DROP SIZE DISTRIBUTIONS

It is safe to say that interactions between growing drops
exist by virtue of their combined effect on ambient vapor
density and temperature. Otherwise they can be regarded as
isolated (Williams and Carstens, 1971). Therefore the above
theory can be used in infer certain trends in the evolution
of drop size spectra. This can be done using a simple two
drop model.

Consider two noninteracting drops of radius ay and a,,
where a; > a,, growing under identical ambient conditions. In
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addition, consider activated (free growing) drops where curvature
dominates the effect of dissolved salts. Substituting a, and
a, into eq. (42) and dividing yields:

. r*/a1
il ) iﬁ 1+2/a2 ]__STT' (51)
a a) I#273, 1_r*/az

ST

The first factor on the right implies a narrowing of the spec-

trum, and is associated with the basic geometry of the process;
this term is responsible for the well known narrowing tendency
of diffusive growth of drops. The second term implies a broad-
ening tendency and is associated with surface kinetic effects;

its effect diminishes as the drops grow larger. The first two

factors together, (a2+2)/(a1+£), imply a narrowing, but at a

slower rate than that given by az/al. The last factor implies

a broadening, and is ascribable to curvature effects. There is
also a dependence on_the applied supersaturation via the
"radius", R-r*(S-l)'l. The first and last factors will lead to
a broadening if atl'1 + az'l>R'1. But one would only expect
significant broadening if S is such as to cause a; to increase
(growth) and a, to decrease (evaporation), that is if S inter-
sects (due, for example, to depletion) Ssat at the unstable
equilibrium radius, a,» where a,<a <a,. Elton et al (1957)

nevertheless argue that this process is too slow to be of much
importance in cumulus spectra. If the size distribution is
localized around a, sufficiently to justify the expansion of

eq. (46) (around a, instead of as) the broadening,

a; - a, = [a;(0)-a,(0)]exp(t/1),

is characterized by a (positive) relaxation time,

% x
{r /(S-1)+2]T

T = .
(=) (s-1y°

Deffpeq
The magnitude of t depends strongly on the value of S-1 where
it "cuts" the distribution. At S-1 » 10'4 (17°C) for example
T~ 10% sec. At §-1 n 10'3, on the other hand Tt ~ 10 sec.
While there is a tendency for the radial size distribution

to narrow, no such tendency is implied for areal size distribu-
tions, at least under growth conditions:
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%f (4nalz) 1+2,/a2 1-r*/(S-1)a1

= (52)
%f (4ﬂa22) 1*‘Q’/al l-r*7is-1)az

In this case there is a broadening tendency which diminishes as

the radii become larger. As fall velocity is directly proportional
to area (up to about 30 p), there is no diminution of relative
fall velocities, but rather the possibility of an early increase.
(Such a trend may enter into consideration of the '"next stage'"

in the growth process, collision-coalescence, especially in

light of the pronounced increase in collision efficiencies
displayed by Klett and Davis (1973) in the region of closely
spaced radii.) The divergence of the mass distribution may be
similarly argued.

The remarks made here are confined to direct consequences
of diffusive growth on size distributions. The spectra of
nuclei upon which droplets grow can play an important role.
Spectra are also affected by larger scale dynamics as found in
clouds (Warner, 1970; Bartlett and Jonas, 1972). Mason and
Jonas (1974) predicted drop size distributions agreeing with
those of Warner (1969) on the basis of simple diffusive growth :
(2=0) applied to drops growing (and evaporating) inside spheri- !
cal thermals which ascend through the residue of their prede-- é
cessors. Fitzgerald, on the other hand, predicted drop spectra !
in continental clouds on the basis of eq. (40), with measured
nuclei distribution using a closed parcel model.

COMPARISON WITH EXPERIMENT

The experiments herein reported are a direct outgrowth of
the work of Vietti and Schuster (1973a, b). Some preliminary
results have already been discussed by Carter and Carstens
(1974). It should be mentioned that measurements reported here
do not apply directly to the atmosphere because the super-
saturations produced in a Wilson cloud chamber are much larger
than those produced in clouds. Nevertheless the present analysis
argues for the general validity of the conventional growth ;
theory since one would expect the basic physical mechanism, and :
hence the theory describing it, to be the same at the low as at i
the high supersaturations, and moreover (with changes in con- '
stants) independent of the non-condensible gas employed.

It is common to put the thermal accommodation coefficient !
equal to unity (Alty and Mackay, 1935), and we have done so here ;
for both gases. Other pairs of these constants will fit as
well; even though we have some temperature spread we have not
as yet been able to separate the two parameters.
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The experimental apparatus, laser, cloud chamber, etc.,
are the same as were used by Vietti and Schuster (1973a, b)
and we refer to their articles for a full description. The
droplets were generated by homogeneous nucleation in a Wilson
expansion chamber and allowed to grow, after nucleation, at
supersaturat&on ratios ranging from about 1.3 to 3.5. Scattering

from a 6328 A He-Ne laser at 30° (off of the incoming beam)
provided part of the experimental data. A continuous pressure
measurement within the chamberprovided the data needed to relate
growth rate to bulk thermodynamic conditions. Details of the
pressure and scattering intensity measurements are discussed

by Vietti and Schuster. Also, these authors discuss the drop
size distribution (which is narrow, due to the abruptness of

the generation technique) as well as its influence on the sharp-
ness of the Mie peaks.

From the analysis of Vietti and Schuster, it may be con-
cluded that there is a fair agreement between their data
and the standard growth theory (Fukuta and Walter, 1970).
Furthermore, it is clear that such agreement can be secured
with values of either sticking or thermal accommodation
coefficients considerably less than unity. Our reason for
looking again at these experiments and the analysis is to uncover
reasons for what discrepancy exists between theory and experi-
ment and attempt to improve the agreement. As will be seen,
the agreement can be substantially improved, leading not only
to more confidence in the theory but to a more precise estimate
of the sticking and accommodation coefficients.

The growth in Argon was measured under supersaturation
ratios ranging from about 1.3 to 3.5. (Appropriate physical
constants, diffusion coefficient, thermal conductivity, etc.,
were taken from Vietti and Schuster's work where the various
sources can be found.) Seventeen runs were analyzed, two of
which are displayed in figures 1 and 2. In fig. 1 the total
pressure after nucleation runs from 1.37 x 106 dynes/cm2 at

.3 sec. about linearly to 1.39 x 10° dynes/cm2 at 1.0 sec; the
corresponding temperatures are 6.49C and 7.8°C, 1In fig. 2

these values are 1.43 x 1'06 and 1.44 x 106 dynes/cm2 at 11.2°

and 120C. The dashed line denotes the theoretical prediction

of growth without depletion of vapor and addition of heat due

to growth. The solid line follows the data and the lower solid
line denotes the course of the supersaturation ratio during

the growth process. It is felt that the two runs shown are
typical of all our Argon runs. While we did not investigate the
matter in statistical detail, it would appear that there is no
systematic difference between the agreements at low and high
growing supersaturations.
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The air runs are shown in figures 3 and 4. In figure 3

6 2

the pressure and temperature at .4 sec are 1.26 x 10° dynes/cm
and 2.8°C, and at 1. sec 1.28 x 106 dynes/cm2 and 4°C. These
numbers for figure 4 are 1.5 x 106 dynes/cmz, 19 °C and
1.5 x 10° dynes/cmz, 19°C.

The data of all runs can be fit, to the degree indicated
in figures 1 through 4, by « = 1 and B = .022; they appear to
be equally well fitted, for example, with o = .1'and B8 = .11.

The problem of "initial conditions" is important in using
this technique. There is no guarantee that the first observed
peak is actually the first Mie peak. This may be due to the
possibility that the first peak, which is weak anyway, is not
resolved. It may also be that the size distribution is just
broad enough at the first peak (.45 microns) that it is washed
out. In systematically decreasing the growing supersaturation,
we have continuously scrutinized the data for the earliest
peak. In Argon we have identified the earliest peak as the first
Mie peak on the grounds that the extrapolation of the growth
curves through radius "zero'" (embryonic size) always passes
through the nucleation event, i.e. that very narrow portion of
the supersaturation pulse during which the supersaturation is
critical. Shifting the data by one peak, that is assuming that
the first observed peak is really the second Mie peak, leads to
an extrapolation which clearly precedes the nucleation event.
Thus in Argon our identification of the first peak depends upon
the validity of the above extrapolation (i.e. that the growth
does not drastically depart from the theory below 0.45 microns),
as well as the fact that we simply never observe an earlier
peak. In air, on the other hand, the Mie peaks had to be
shifted in order to cause the curve to pass through the nuclea-
tion event. The data for the air runs are not as clean cut as
in Argon due to the difficulty of generating drops by homo-
geneous nucleation in air. Also, while the fits at higher
growing supersaturations are about as good in air as in Argon,
there seems to be a systematic worsening, in air only, of the
overall fit toward lower growing supersaturations. Further work
on air is continuing.

The analysis of error, especially in the data, is a
difficult problem, and we have accepted Vietti and Schuster's
values on this (1973a). They give about 4% on the evaluation
of the theoretical curve. On the data, time resolution was
within 5% on placement of the first few data peaks and tends
to decrease to .5% toward the end of the run. Uncertainty in
pressure measurement led to negligible error. Placement of
the maxima and minima from the theoretical curves, we feel, led
to a negligible error, especially since this error was non-
systematic. Estimated drop counts were small enough to neglect
vapor depletion and heat addition.
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CONCLUDING REMARKS

The comparison between the theory herein presented and
data is good, and indicates that the condensation and/or
thermal accommodation coefficient should be small. We have
chosen .022 and 1. for air and Argon. Work on air is continuing.
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GROWTH MECHANISMS FOR
URBAN AEROSOL PARTICLES

S. L. Heisler and S. K. Friedlander
California Institute of Technology
Pasadena, California

ABSTRACT

The general equation describing the dynamics of a cloud of small
particles includes a term for growth from the continuous phase. This
process is of controlling importance in the dynamics of urban aerosols and
is closely related to the visibility problem.

An experimental program has been initiated to determine the form of
the growth law under conditions simulating the Los Angeles atmosphere.
Experiments have been conducted in which hydrocarbons, sulfur dioxide
and oxides of nitrogen were added to ambient Pasadena aerosol ina 60 m
Teflon bag exposed to natural solar radiation. The ensuing photochemical
reactions caused growth of the aerosol particles, An optical particle coun-
ter was used to measure the size distributions of the aerosol as a function !
of time for particles larger than 0.30yum diameter. :

The changes in the size distributions with time were used to determine i
particle growth rates as a function of size and time. The results indicate :
that the gas-to-particle conversion process consists of the formation of :
supersaturated chemical species in the gas phase followed by condensation
of these species on preexisting particles. In the condensation process, the
variation of vapor pressure of the condensing species above the droplet
with size (Kelvin relation) must be taken into account; this effect leads to
sizes below which condensation does not occur.

INTRODUCTION

Reliable methods for relating the urban smog aerosol to its sources
are needed for the control of visibility and of human exposure to trace
metals, organic substances, sulfates and nitrates. Visibility reduction by
light scattering and health effects by deposition of particles in the lungs are
complex functions of the aerosol size distribution. It is necessary to be
able to determine the manner in which the aerosol is modified by various
processes,

Particulate sources can be classified as either primary or secondary.
Primary sources are those which emit particles directly into the atmos-
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phere. Secondary sources are those which lead to the formation of par-
ticulate material in the atmosphere through gas-to-particle conversion.
Much of the organic material, sulfates and nitrates in urban aerosols
results from secondary processes and accounts for about one-half of the
aerosol mass during periods of moderate to heavy smog in Los Angeles (1).
It is the goal of this research to determine the manners in which the size
distribution is affected by these secondary sources.

AEROSOL DYNAMICS

The dynamics of a cloud of small particles can be described by a
partial integro-differential equation:

3n(d_, T, t) \
+ % [(v(r, t) + vs(dp))n(dp, r, t)] +—— [I(dp, r, t)n(dp, T, t)]

d

t
° P

d
=oD nd , 7, t)+3 [ Pga’ &,5, 0@’ T, t)ad, T, t)dd * - (1
(@ )vn(d_ );jompp )n(d )nd, 7, tad 1)
-]
nd, T, t d,d’% T t)nd’, T, t)dd ’
@ )joe(p . @ ) dd

n(dp, ;, t) is the size distribution function and is defined such that dN, the
number of particles per unit volume with sizes in the range dp to dp + ddp
is given by:

dN(d_, T, t) = n(d, T, t)dd 2
(p ) (pr )p (2)

gvllere d_ is particle diameter, T is the position vector and t is the time.
v(r, t) is the velocity of the suspending fluid and vg(d_) is the particle
settling velocity, I(dp, ?, t) is the rate of change of garticle diameter by
gas-to-particle conversion and growth of preexisting particles:

dd
.

R (3)

D(dp) is the particle diffusion coefficient. g T dpj) is the coagulation

constant for particles of sizes dpi and dpj so thatg (d ., dpj)n(dpi’ T, t)
n(dpj, r, t)dd?iddpd- is the collision rate per unit volume ﬁ9f fluid between
particles of sizes pi to d'pi + ddpi and dpj to dpj + ddpj. dp is defined by
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d = d° - d 4
P (P p) 4)

Eq. (1) results from an analysis of the rate of change of the number
of particles with sizes between d‘.p and +dd in an infinitesimal volume,
as a result of convection, diffusion, sedimentation, coagulation and gas-to
-particle conversion. Differences between the velocities of the fluid and
the particles due to inertial effects have not been considered. The second
term on the left side of Eq. (1) results from convection and settling, The
third term arises from growth through gas-to-particle conversion. The
first term on the right side results from particle diffusion, and the second
and third terms from coagulation. The growth term can be interpreted to
include homogeneous nucleation provided suitable constraints are placed
on R, the collision frequency function. Primary aerosol sources appear in
the boundary conditions for the equation, while the secondary sources are .
in the equation itself.

If the motion of the suspending fluid is turbulent, short time fluctu-
ations must be taken into account. The Reynolds hypothesis can be applied
where '\7, n and I are assumed to be sums of slowly and rapidly varying
terms such that the averages of the rapidly varying terms vanish over
short times

’

<l
<l

<1
]

d

+
+n’ (5)
+

i g
- o

Turbulent coagulation is neglected, and 8 is not considered to be a fluctu-
ating variable. The over-lines represent short time averages and the
prime denote rapid fluctuations. The fluctuating term in I is due to vari-
ations in gas phase concentrations. Eq. (5) can be substituted into (1) and
the equation averaged over short times to give:
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d d ———
+3{ Pae ’, &)n@_)n@d)dd +3 [ Pad_*, d)n’@ “)n"(d )da *
b Py dna a@)ads et [ Pad t 3)nte )@ e,




556

- njo 8d ", 4 )R ")dd * 6
(6)

-]
g ———

- d,d”’ d ‘(d “)dd
jop(p REECRIRTGLLY

Various terms in Eq. (6) dominate in different particle size ranges.
Convection and eddy diffusion are independent of particle size in the absence
of inertial effects. Sedimentation is significant only for large particles
(dy > lum). Gas to particle conversion causes an increase in particle
size and, for certain forms of I, leads to accumulation of particles in
certain size ranges. Brownian diffusion affects very small particles
(d_ < 0.1lym). Brownian coagulation causes a drop in the number of very
small particles and transfers them to larger sizes. However, the effect
on these larger sizes is generally small since only a small amount of
material is transferred. Coagulation by laminar shear can affect all sizes.
Coagulation by differential sedimentation is important for coagulation
between large particles of differing sizes and can, under certain circum-
stances, sweep large numbers of smaller particles from the atmos-
phere,

Visibility reduction by smog aerosols results primarily from light
scattering by particles with diameters between 0.1 and 1. 0ym (2). Primary
aerosols as they are emitted cannot account for the observed visibility
reduction (1). Analysis of chemical composition shows that the products
of secondary conversion processes account for a major portion of the
aerosol on days of poor visibility (1, 4). This is consistent with the results
of Husar, et al. (3) who have shown that gas-to-particle conversion can
account for the accumulation in the 0.1 to 1, Oym size range, Hence par-
ticle growth plays a key role in the dynamics of the urban aerosol; the
purpose of this study was to evaluate growth mechanisms experimentally
and theoretically.

GROWTH LAWS

The form of the growth law depends on the mechanism which controls
the rate of transfer to the individual particles (4). If diffusion of gas phase
material to the particles controls, the growth law is given by Fuchs and
Sutugin (5) based on the work of Sahni (6):

p;.) ()]

d
dv _ ZZ"DiMi ° (p. -
dt o RT 1+42) i
i d
P
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where v is the particle volume, t is time, Di the diffusion coefficient of the
ith species, p; and p;, its partial pressure far from and near the particle,
p; its particulate phase density and M; its molecular weight. R is the gas
law constant, T the absolute temperature, and ) the mean free path in

air. The factor 4 is given by:

-1
L = 1,333 + 0, 7.]i Kn 8)
1 +Kn

where Kn = 2)/d_ is the Knudsen number. Equation (7) assumes that

(1) the diffusion is a quasi-stationary process, so that the flux of material
to the particle can be considered constant with time, (2) the concentration
of diffusing molecules in the gas phase is small enough that collisions
between diffusing molecules can be neglected and (3) the masses of the
diffusing molecules are much less than those of the bulk phase (air) so
that diffusing molecules assume the velocity distribution of the bulk phase
molecules following collisions. The first two assumptions are probably
valid in urban smog while the last is not. However, the problem for which
the last assumption does not hold has not been solved.

When the diffusing species is adsorbed or absorbed by the particles,
Pjo vanishes. When droplet curvature and solution composition have a
significant effect on vapor pressure, the Gibbs-Duhem equation can be
used to calculate the equilibrium partial pressure of the ith gpecies over
the solution droplet:

P, = P, %% exp(4qg Mi/ piRpo) (9)

where p_. is the vapor pressure of the species, x. its particulate mole
fraction, g the surface tension of the particle an& vi is the activity coef-
ficient of the species in the particle defined such that ¥; approaches one as
xj approaches one. It is assumed that the gas phase is ideal. The growth
rate is then given by:

27D M.D.: d
dv _ ) ™iM;Pvi P_[S, - ¥x exp( oM, )] (10)
dt P.RT 1 +42) p.RTd
1 d 1 p
P

where S; = Pi/Pvi is the saturation ratio for the i"'h species. If all the
saturation ratios are near one and yjx; is independent of particle size, the
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exponentials can be expanded and only the linear terms retained to give:

dv 1 *
& " TVIEE ) A -4y a
d i
P
where
*
dpi = 40M,/p.RT 1n(S,/y.x.) (12)
and
A, = FDiMiPvi ) s 1ns, (13)
i piRT i
Equation (5) can be written as:
. A w a¥ (14)
at TT[%_A P p
P
where
A = ZAi (15)
1
and
Z *
Ad .
* i 'p
d_ = (16)

£
dp is the critical size below which growth does not occur,

If the rate of particle growth is limited by a chemical reaction which
occurs on the surface of the particle, the growth law is:

dv 2
at Kl(t)ﬂ'dp (17)
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where the factor K, (t) is equal to the rate of production of particulate ma-
terial per unit surface area and is assumed to be independent of size.

If reactions occurring within the particle control the growth, the
rate is:

dv

3
i Kz(t)ﬂdp /6 (18)

where K, (t) is the rate of production of particulate material per unit
particle volume and, like Kl’ is assumed to be independent of size,

EXPERIMENTAL PROCEDURE

Experiments are being conducted to measure the growth rate as a
function of particle size using a 60m3 bas constructed of 1 mil Teflon
sheets as a reaction vessel. The sheets are heat sealed together and the
seams reenforced with mylar tape. TeflonR was chosen because of its
transparency to ultra-violet radiation and its inert chemical nature; ozone
losses to the walls are small. Experiments are conducted on the roof of
the Keck Laboratory using natural solar radiation.

In a typical experiment, atmospheric air with its ambient aerosol
burden is introduced into the bag, and an organic vapor, NO, and NO,_ are
added. In some cases, is also added. Precautions are taken to assure
adequate mixing of the addi%wes with the air. The quantity of NO added
is sufficient to reduce the initial ozone concentration to zero. The bag is
flushed with ambient air a minimum of three times before the introduction
of the additives in order to remove residual products from previous ex-
periments. Particle size distributions are measured as a function of time
in the size range above 0.30ym particle diameter with a modified Climet .
Instruments Model CI-201 optical particle counter in conjunction with a
multichannel analyzer., Concentrations of NO, NO,, SO2 and ozone are
also monitored as well as total aerosol number concentration, light scat-
tering and solar radiation. The size distribution measurements are made
over a 100 to 150 sec time period. An additional 100 sec. is required
between measurements for output of the data to a Teletype.

The Mie theory of light scattering in conjunction with monodisperse
polystyrene latex spheres has been used to determine theoretical calibra-
tions for the optical counter system for various particle refractive indices,
The particles in the bag have been assumed to be spherical with an index
of refraction of 1.5 (2).




) 560

EXPERIMENTAL RESULTS

To calculate particle growth rates, the following assumptions are
made: (1) coagulation does not affect the number or size of particles
measured by the optical particle counter (d, > 0.3um), (2) all particles
of a given size grow at the same rate and (f) the growth rate is a mono-
tonic function of size, Calculations of coagulation rates based on Brownian
diffusion and measured total number concentrations support the first assump-
tion, and the experimental results are consistent with the second and third.
Then, as a given size particle grows, the number concentration of larger
particles will remain the same. Let NGT(d,, t) be the number concen-
tration of particles with diameters greater t%an or equal to dp. If a particle

of sized_att growstod , att :
po o pl 1

NGT(dpl, tl) = NGT(dpo, to) (19)

Hence, measurements of NGT at two different times can be used to calcu-
late values of d | for various values of dj,,. Particle growth rates as a
function of size are then approximated by:

dv Ll 3 3
dt ~ 6At (dpl - dpo) (20)

where At is the time between measurements. The value of the growth rate
is assumed to be for the mean size dp:

d = (d
p(pl

+ dpo)/Z (21)
Three experiments have been conducted. In each, 1 ppm of 1, 7-octa-
diene, 0.33 ppm of NO and 0. 33 ppm of NO, were added. In one, F91, 0.05
ppm of SO, were also added. The times, initial and final total number con-
centrations, light scattering coefficient (bgcat) and maximum ozone concen-
trations are listed in Table I, Local visibility is inversely proportional to
bgcat. Figure 1 shows NGT vs.clp for various times in experiment FO5,

Schuetzle, et al.(7) have identified difunctional organic compounds,
such as adipic acid in smog aerosol, Such compounds result from the photo-
chemical oxidation of diolefins or cyclic olefins. Octadiene was chosen as
representative of such aerosol precursors.

If the growth is described by either Equation (7) or by (14), both
of which result from diffusion, dv/dt (1 + 4Kn) should be a linear func-
tion of particle size. Values of dv/dt (1 + 4Kn) from experiment FO4
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are shown in Figures 2-6. The lines in the figures are least-squares
best fit straight lines to the data, The fits are seen to be good with
positive intercepts on the particle size axis. Since Eq. (7) predicts
that this intercept should be zero and Eq. (14) predicts a positive value,
the results indicate that Eq. (14) can be used to describe the growth and
that the growth is therefore due to condensation on the particles and that the
variation of vapor above the droplet with radius must be taken into account.
The best-fit values of A varied from 3.89 x 10-5 to 1. 03 x 10-4um2/
sec in experiment FO4 with an average of 7, 05 x 10'5g,m2/sec and a stan-
dard deviation of 1,97 x 10'5. The values of dp varied from 0.259 to
0.274m with an average of 0.268m and a standard deviation of 0. 005 m,
For experiment FO5, the values of A varied from 4.83 x 1075 to 1,48
x 107°yum®/sec, with an average of 8.25 x 1075 and a standard deviation of
3.31 x 10°5, 4 varied from 0.270 to 0. 310ym with an average and stan-
dard deviation of 0.285 and 0. 01l1m. For experiment F91, A varied from
3,84 x 1075 to 1.44 x 10"4um2/sec with an average and standard deviation
of 9.78 x 10™> and 2. 95 x 10-5,m?2/sec. d* varied from 0.257 to 0.423ym
with an average and standard deviation of 01;.‘281 um and 0.056ym, The
uncertainties in the individual estimates of A and d; were on the order of
5% and 8%, respectively, for all three experiments.,

A series of calculations have been carried out to see whether Eq. (14)
can predict the changes in the measured size distributions. The calculations
consisted of using a measured size distribution and applying the fitted
growth laws over the intervening time period to a later measured distri-
bution. The results of such calculations are shown in Figures 7 and 8.

Fig. 7 resulted from using the third measured distribution in experiment
FOS5 as an initial condition and applying the growth law over the 460 gec. to
the fourth measured distribution. Figure 8 shows the results of using the
first measured distribution in FO5 as an initial condition and integrating
over 2719 sec. to the time of the last measured distribution. The func-
tion plotted is dV/dlog(d )} where V is total aerosol volume concentration
and the logarithm is to bfse ‘10, The agreement is seen to be good in
Fig. 7. Similar agreement between predicted and measured distributions
were found for all other calculations between consecutively measured
distributions. The agreement in Fig. 8 is not as good, small deviations
having propogated over the long integration time involved.

CONC LUSIONS

Three experiments have been conducted in which the growth of
aerosols due to gas-to-particle conversion was studied. The system used
was naturally irradiated, ambient, unfiltered urban air to which 1, 7-
octadiene, NO, NO2 and, in one case, SO, were added. The growth rates
of the particles larger than 0.3y m diameter were measured as functions
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of time and particle size. The observed variations of growth rate with
particle size can be described by a growth law resulting from a multi-
component supersaturated vapor phase, where the supersaturations are
on the order of a few percent and the particulate chemical composition
is fairly constant with size. The variation of the vapor pressure of the
condensing substances above the particles with radius must be taken into
account. Critical diameters on the order of 0.28;m were found.
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Fig. 1. Number concentration of
particles with diameters greater
or equal to a given size, NGT, vs.
particle diameter, DP, for various
times in experiment FO5. Each
curve is from a single size distri-
bution measurement. For a given
size, NGT increased with time. The
time between measurements variled
from 220 to 270 sec.
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Fig. 2. Particle growth rates
calculated from consecutive size
distributions in experiment FO4.
The values shown are dv/dt

(1 + {Kn). The linear ferm is
|_predicted by equation (7) pre~
dicting a zero dp intercept and
equation (14) predicting a posi-

ties due to counting in measuring
the size distributions. The num-
bers in the upper left corner are
the pairs of size distributions

ugsed in the calculations.
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The values shown are dv/dt
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— predicted by equation (7) pre-~ _
dicting a zero d_ intercept and
equation (14) predicting a posi-
tive d, intercept. The error bars

reflecg the statistical uncertain-

ties due to counting in measuring

the size distributions. The num-
bers in the upper left corner are
the pairs of size distributions
ugsed in the calculations.
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o [~ Fig. 4. Particle growth rates

I T | T !
FOo4

15 70 16

calculated from consecutive size
distributions in experiment FO4.
The values shown are dv/dt

predicted by equation (7) pre-
dicting a zero d_ intercept and
equation (14) prgdicting a posi-
tive d_ intercept. The error bars
reflecg the statistical uncertain-
ties due to counting in measuring
the size distributions. The num-
bers in the upper left corner are
the pairs of size distributions
used in the calculaticna,
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Fig. 5. Particle growth rates
calculated from consecutive size
distributions in experiment FO4,
The values shown are dv/dt

(1 + {Kn). The linear form ia
predicted by equatfon (7) pre-
dicting a zero dp intercept and
equation (14) predicting a poai-
tive dp intercept. The error bars
reflect the statistical uncertain-
ties due to counting in measuring
the size distributions. The num-
bers in the upper left corner are
the pairs of size distributions
used in the calculations.
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Fig. 6. Particle growth rates
calculated from consecutive size
distributions in experiment FO4.
The values shown are dv/dt

(1 + fRn). The linear form is
predicted by equation(7) pre-
dicting a zero dp intercept and
equation (14) predicting a posi-
tive d_ intercept. The error bars
reflecl the statistical uncertain-
ties due to counting in measuring
the size distributions. The num-
bers in the upper left corner are
the pairs of size distributiomns
used in the calculations.

1 { |

|

0.1

0.2 0.3 04 0.5 0.6

- MIC
DP RONS

0.7

0.9

1.0




570

uoo. 600. 800. 1000.
| | !

BV/DLOGCDP)-CU. MICRONS/CC

200.
|

FOS
37170 4

Fig. 7. Application of the best-fit
growth law (Eq. (14)) to the time
interval between the third and fourth
volume distributions in experiment FOS.
The time interval between the measure-
ments was 460 sec. The lower curve is
the third distribution. The upper curve
is the size distribution predicted by
the growth law for the time of the
fourth measurement. The peints are the
fourth measured diatributien.
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Fig. 8. Application of the best fit
growth laws (Eq. (14)) to the time
interval between the first and
eleventh measured volume diatribu-
tions in experiment FO5. The time
interval was 2719 sec.
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MICROSTRUCTURE, COMPOSITION AND DYNAMICAL
EVOLUTION OF SCATTERING PARTICULATES
DETERMINED FROM QPTICAL DATA

Alain L, Fymat
Jet Propulsion Laboratory,
California Institute of Technology
Pasadena, California 91103

ABSTRACT

A method is described for determining the
microstructure and composition of scattering
particulates from optical data. In a first step,
angular measurements of light scattered in a for-
ward cone of approximate half-width 7.5° are per-
formed with an angular resolution of 15 min, or finer,
at a near IR wavelength longer than approximately
0.7 pwm but not exceeding the expected minimum
particle radius, Data obtained in this manner are
used to reconstruct the particle size distribution
beyond 0.7 pm from a closed form, analytical
inverse solution to the angular diffraction integral
generalized to a polydispersion. This solution is
essentially independent of the refractive index, and
is unconstrained relatively to any analytical distribu-
tion model. It applies to any arbitrary mixture of j
different species of particles, each species eventually
exhibiting a different refractive index, imbedded in
i different species of gases. An effective gaseous
depolarization factor can be determined separately
from the measurement at a single near-forward
scattering angle of the degree of polarization of the
diffracted light, The effect of gases on light scat-
tered by larger particles can thus be effectively
eliminated. In a second step, the identical measure-
ment are carried out at a set of additional wavelengths
substantially different from the first one. With the
size distribution determined in the first step, the
latter data are employed to retrieve the complex
refractive index at these other wavelengths using a
nonlinear minimization search routine we developed
earlier. The method can be implemented for real-
time operation, thus also providing a means for
monitoring the dynamical evolution of the particles.

L INTRODUCTION
Clouds, radiation and dynamics form the closed system which

determines our weather and climate, Each of these three elements
is affected, either directly or indirectly, by the scattering
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particulates present in the atmosphere in the form of aerosols
(natural and anthropogenic), hydrosols (fog, sea sprays) and larger
particles (water drops and ice crystals), The effect of these partic-
ulates depends on their physical characteristics (geometrical shape,
size and distribution, complex refractive index), and on their
residence time in the atmosphere. Great interest is therefore
attached to the determination of these characteristics and this resi-
dence time, Current concern about the quality of our environment
has added tremendously to this interest. Several experimental and
theoretical techniques dealing with this problem are therefore being
revived, improved or newly developed, These techniques transcend
the field of meteorology and may be of direct applicability in other
fields of science and engineering,

Conventional experimental techniques are based on in situ
sampling during which the particles are thermally precipitated,
impacted or otherwise mechanically collected. Analysis of their
sizes is effected in the bulk range (0,01 - 1,000 um) covering aero-
sols, non-precipitating clouds and some rain drops. As is well known,
however, several problems are associated with these techniques.
While it is not our purpose to discuss here these problems, let us at
least indicate that, because the medium is disturbed by the sampling
process, it is generally thought that the sample so obtained is not
representative. Imaging techniques are also being developed, How-
ever, because the measurements are still performed within the
medium, it is difficult to assess whether the problem just indicated
has been overcome and to what extent. Remote sensing techniques,
on the other hand, can by definition overcome this fundamental prob-
lem. They are, however, encumbered with analytical and numerical
difficulties. These are discussed systematically elsewhere [1]. In
the latter techniques, the main efforts have concentrated on only the
determination of the size distribution of spherical particles of known’
composition. In this paper, we wish to present a method we have
recently developed for retrieving the size distribution as well as the
refractive index and its spectrum. This method involves a two-step
process. The first step provides the size distribution independently
of the refractive index, a feature of particular interest in the study
of drops and bubbles. Using this knowledge, the second step of
the process then yields the refractive index spectrum,

II., SOME BACKGROUND REMA RKS

Consider an arbitrary mixture of gases and particulates, either
contained in a laboratory cell or freely suspended in air or in weight-
lessness. This medium is illuminated by shortwave radiation (solar
light or artificial light source) of known brightness and state of polar-
ization. On interaction, this incident light is partly absorbed and
scattered by both gases and particles in the medium. The radiation
emerging after interaction can be conveniently separated, both
analytically and experimentally, into a direct and a diffuse compo-
nent. The former component is that part of the incident radiation
that has been reduced by absorption and first-order scattering
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processes, It propagates in the exact forward direction and is in the
same state of polarization as the incoming light, The latter compo-
nent, the remaining fraction of the incident light, has suffered the
same two processes of absorption and scattering but has, in counter-
part, been augmented by second- and higher-order scattering (i.e.,
virtual medium emission) into any viewing direction of interest. It
propagates in all directions between and including the exact forward
and the exact backward directions. With the exception of the exact
forward direction, it is generally in a different state of polarization
than the light source. Its intensity in this forward direction is negli-
gible compared to that of the direct beam but, nevertheless, amounts
to half the total scattered light, the remaining half being distributed
among all other directions.

Both the direct and the diffuse light beams contain information
about the absorbing and scattering medium. While it is difficult to
quantify the relative information content of these two beams, it is
immediately clear that the diffuse beam affords many more possi-
bilities for retrieving this information than the direct beam. To be
sure, the diffuse beam will be described by four observables,
so called Stokes's parameters (I, Q, U, V) which give, respectively,
the light intensity, its degree of polarization, the orientation of its
plane of polarization, and the ellipticity of its polarization ellipse.
Each observable exhibits variations with both angle and frequency.
On the other hand, the direct beam, characterized only by its inten-
sity, presents solely frequency variations. This statement, however,
should not be construed to imply that the direct beam is in any way
of lesser importance, or contains less information than the diffuse
beam. Only a detailed and systematic investigation of both sgitua-
tions will provide a reasonable conclusion as to their relative merits
and disadvantages. A concerted use of both beams, when experi-
mentally feasible, may indeed provide a powerful approach since
the two determinations of particle parameters resulting from use of
the two beams must necessarily be consgistent.

The basic problem, in any event, is the following: given, with
all required details, the lights incident on, and emerging from, the
medium under consideration, determine the medium composition
and microstructure. More specifically, determine for each gas
present its absorption cross-section, refractive index, anisotropy
parameter (for nonspherical atoms and molecules), and number
density. (The scattering cross-section is expressed in terms of
the latter three parameters by the well-known Rayleigh-Cabannes
formula [ 2]). Likewise, for each particulate, determine its shape,
number density, size distribution, and refractive index (both real and
imaginary parts). Lastly, determine the medium total optical thick-
ness and, if the medium is bounded by a reflecting surface, such as
for the Earth's atmosphere, also determine the surface character-
istics. This is a formidable task! Excluding for the moment the
surface reflection, the number of unknowns is 5(N + M) + 1 in the
case of N gases and M particulates, assuming that each particulate
type can be described by a single characteristic dimension, If the
detailed size distribution must be determined, this number becomes
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5N + (4 + P) M + 1, where P is the number of parameters describing
adequately the distribution. Although analytical distributions may

not, in many cases, provide adequate representations, let us at least
mention that for the most widely used distributions in meteorology,

P = 1 (power, exponential and lognormal distributions) or P = 2
(modified gamma distribution). The spatial variations of these
unknowns must also be determined, The corresponding formulation,
considering only variations in the vertical, has been provided in

our earlier work [1] for the direct beam, and the diffuse beam either
reflected by, or transmitted through, the medium after an arbitrary
number of scattering events. If the surface, composed of Q different
materials, is assimilated to an optically infinite atmosphere, the
above cited numbers of unknowns become 5(N + M + Q) + 1 and

5N + (4 + P)(M + Q) + 1, respectively, No solution has yet been
obtained to this general problem. In the meantime, workers in the
field are concentrating their efforts on specialized cases in the hope
that the experience and understanding thus acquired will lend a helpful
hand for tackling the realistic problem. It is clear from the start that
reductions in the problem dimensionality, when justified by either a
theoretical analysis or the experimental conditions will be critical

to the success of the enterprise, If the actual inhomogeneous medium
exhibiting spatial variations can be mimicked by an equivalent
homogeneous medium with no such variations, that is if two such
media can be found that result in the same emergent radiation field,
then, obviously, the true physical parameters of the particles cannot
be determined. Instead, "effective" parameters will be obtained which
may depart from the true ones. Such effective parameters may never-
theless be useful for a study, not of the properties, but of the effects
of the particulates on radiation field observables. We have provided
[1] a critical, although not exhaustive, analysis of the various methods
thus developed. In this paper, we will limit ourselves to that method
developed by the author that seems more appropriate to the purposes
of the present volume. Additional material can be found in our earlier
publications [1, 3, 4].

III., STATEMENT OF PROBLEM

The following problem will be considered: unpolarized light of
wavelength, A\, forming a parallel beam of intensity, Ij, is incident
along the direction 6y = coslujona plane-parallel stratified medium
consisting of an arbitrary mixture of i different species of gases and
j different species of particulates. The direction of incidence is
referred to the normal to the plane of stratification of the medium,
and the particles, which may present a distribution in their refractive
indices, are assumed to be homogeneous, spherical, and their sizes
described by some arbitrary distribution, n(r), where r is the particle
radius., It must be noted that this distribution is not restricted to any
particular analytical model and may describe a monodispersion or any
arbitrary polydispersion having one or several modes.

The total optical thickness, T}, of the medium at wavelength :\
will be assumed to be small, ] « 1, 8o that only single scattering
need be studied. No reflecting boundary will be considered.
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The diffuse light transmitted along the direction € = cos'1 [TH
referred as earlier to the normal to the plane of stratification, is
polarized with components I = I, and Q = I,, only. They are [1]:

©
L(ry30, \) = Gf I, Py, [m(\), r] n(r)dr, k=1, 2, (1
0
where
= -my/k -1y /8
fEf‘*ﬁ“»“o“z*(roo':ﬁ (e 1770 o 1 ) (2)

@ is the single scattering albedo:

-
--;I (3)

and Pkl are elements of the scattering phase-matrix:

P = [pmn] [(’ggg)i * ("pgp)j] [

"

(£;+§;)/a’, m,n = 1to 4. (4)

In deriving Eq. (1) it was assumed that the medium is optically
homogeneous, i.e., T and P do not vary in the medium. This is a
reasonable assumption in view of the hypothesis 1) « 1. However,
if the medium were inhomogeneous, then, & and P would apply to
an equivalent homogeneous medium that yields the same transmitted
light, as discussed earlier, The quantity m(\) is the medium com-
plex refractive index at wavelength \; o and @ are volume scattering
and absorption coefficients, respectively, with subscripts g for gases
and p for particles; and ¢ is a volume extinction coefficient, The
superscripts i and j denote, respectively, summations over all i
species of gases and j species of particles, i.e.,
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(...)IEZ(...)I, L=iorj

2

(Einstein' s convention)., In Eq. (3), o) and o must be interpreted
as applying to a polydispersion, i.e., p

©

m

Y y(r) n(r) dr, y crg,. a:’, (5)

where y(r) is for a single particle radius. Lastly, the matrices P

and P, are the Rayleigh-Cabannes { 2] and the Mie [5] phase-matrices,
respegtively. For any m(\) and n(r), Ep can be computed from Mie's
theory.

Inserting Eqs. (3), (4) and (5) in Eq. (1), the latter equation
becomes:

@
.E_ (_illg.) - Fi = Fiid,p [m(\), r] n(r) dr. (6)
0

Now, for any arbitrary 6, we have:

2(v, +1)+ sin’0 (v, -1)
1+2Y; ’

)
Py
-

(-]
I
wlw

(7

]
Fi _3 sin O(Yi-l) ’ .
21, g 4 1+2Yi

i J
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where y; = pi/(Z - pi), p;j being the depolarization factor of the ith gas
species (e.g., p, = 0 for isotropic molecules, Pn = 0.031 for air),
and

j . 2 2
Flp 32 2 sy, 17+ 1sy 517}

i

- (8)

|

j 1 2 2
etz 2 (10 sl
i

where k = 2w/ is the wavenumber, and S 5 25, .(6,\; 1), k=1,2,
are Mie functions for a single particle of the jth 2] species and of
radius r. For given \ and r, the latter functions will depend only on
the refractive index of the jth particle species, However, for forward
scattering (8 = 0°), they reduce to (Kirchkoff approximation to
Fraunhoffer diffraction; see, for example, Ref. 5):

kr Jl(x)

Sl,jESZ,j=—§-iTn—6— , x=krsin @, (9)

where J} is Bessel function of the first kind and order unity. Equa-
tion (9) shows that Sk,j is remarkably independent of the refractive
index, i.e.

Sk,j = Sk . (10)
It follows in this case that Eqs. (8) reduce to
: 212 (x)
) = j 177
1L, p sin2 e ’
(11
Fl, _=o0.

2l,p
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With this result, Eqs. (6) become:

@©

_1 - Fi = .__1_ rZJZ(x) n(r) dr,
11, g . 2 1
sin” ©

_——
—.
o

[ (12)

o

Under the present conditions of single scattering, we also have by
expanding the exponentials in Eq. (2);

Tl €
tim "% " Tcos e (13)

Tl 1

and, when this last result is substituted in Eqs, (12), we get the final

expressions:
1 Il i
ZI(G, \) E T 4 cos ® _i; - Fll,g
-]
= 12 2 Jf(x) n(r) dr, (14)
sin” ©
0
and
I i
Z,(8,\) = 4 cos © TO- - FZl,g = 0. (15)

These two expressions provide the required formulation of the prob-
lem of interest. Equation (14) is the angular diffraction integral
generalized to the case of a polydispersion of scattering particles,
Equation (15) can be used to infer information on gaseous depolariza-
tion [ see Egs. (7)]. Our main problem will now lie in the following
two-step procedure:
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1. Assuming Flll is known or can be determined separately,
to invert Eq. (14) so as to reconstruct the size distribu-
tion n(r).

2. Using step No. 1, to infer from Mie's theory the only
remaining unknown, namely the complex refractive index,
and its spectrum.,

The exact manner in which these two steps are carried out
explicitly is described in the following sections,

1Vv. DETERMINATION OF SIZE DISTRIBUTION

Consider again Eq. (14). The left-hand side of this equation is
a measured quantity which must be used to reconstruct the size dis-
tribution n(r), The ratio (I}/Ig) is directly provided by angular
measurements of light (radiance) scattered in near forward directions
contained within a narrow cone whose half-width will later be pre-
scribed, The quantity F}; , is assumed to be either known a priori
or simultanecusly measurable. For example, if y is an "effective"
parameter describing the combined effect of all gaseous species
present, y = p/(2 - p), where p is an effective depolarization factor
for the assembly of gases, or in the simple case of i = 1 (single gas
species), then, Eqs. (7) become:

-
F .3 2(¥1)+sin’e (V-1)
11»8 4 1 +ZV
i (16)
F _3 sinze (Y-1)
21, © 3 T T+2y
o

where Fkl are effective values of Fi i1 5. A simultaneous mea-
surement 6Fthe degree of polarization oi’%orw_ardly scattered light in
any direction 6 =0° will provide the quantity F}, g, that is y and,
hence, also Fj, g With the above expressions, gl:he quantity Z1
becomes: '

5 .1 )4cose 3, 1+Y
Z,=7 —10‘—(11‘12)'2 T72%( *

(1)

which is obtained immediately for any given cone angle 8, measured
values of (Il/Io) and (IZ/IO), and depolarization factor Y,
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It has been shown [ 6 ] that Eq. (14) with J, substituted in place
of J; and v = 1/2, 1, 3/2 applies to a whole class of scattering
particles: Rayleigh-Gans particles, Fraunhoffer particles, and
those particles covering the intermediate cases between Rayleigh-
Gans and anomalous diffraction [ see Ref. 5 for a description of these
various particles]. With this substitution in mind, the following will
cover all these cases. Using the Bateman-Titchmarsh formula
[7,8], Eq. (14) can be inverted analytically [ 3,4, 6] to yield the
closed form solution:

n(r) = - 2nk Jl(x) Yl(x) x?iTsidn_G)- (sin3 0 Zl)d(sin 0),

(18)

where Y) is a Bessel function of the second kind of order unity, For
the class above listed of particles, Y, should be substituted in place
of this last function. It must be noted that the result in Eq. (18)
makes no assumption regarding the form of n(r); in particular, it does
not assume, as is generally done, that n(r) follows any of the analyti-
cal distributions derived empirically in the literature. Thus, it is’
emphasized, n(r) is unbiased and can be any distribution: isolated
spike (monodispersion), unimodal, polymodal. For the restricted
case of a single species of particles and no gases present, the corre-
sponding result to Eq. (18) is quoted in the Russian literature [ see,
e.g., Ref. 9], but no explicit demonstration of it could be found.

From Titchmarsh's conditions [8], it follows that Eq. (18) is
valid for v 2 0 if erZn(r) is integrable over (0,®), This will always
be true since physical distributions always decay, and vanish beyond
a certain maximal radius value. [The validity for -1/2< v <0
requires that (kr)2V+2 n(r) be integrable over (0,6), 6§ < . For
ve=x1/2, Equation (18) reduces to Fourier's sine formula.] The
solution n(r) given is exactly true for the function Z) defined by
Eq. (14). In reality, however, 6 must remain contained within a
narrow cone of angles; in any event, it cannot exceed 180°. Hence,
it cannot become unbounded as implied by the above solution, and
it therefore becomes conceivable that the distribution n(r) may not
be reproduced exactly or, in some extreme cases, not at all,

We have performed a considerable amount of numerical experi-
ments aimed at assessing the effects of this limitation, and at delimit-
ing the domain of applicability of the solution. Some results of the
study have been discussed elsewhere [3]. Here, we should like to
present some additional new results which should prove to be helpful
in the system design of a particle size spectrometer based on the
method,
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The "measurements'', zl(e » A), were generated in the computer
from Eq. (14) using a number of different forms of n(r): monodis-
persions, and polymodal distributions constructed from a linear com-
bination of a number of expressions like the modified gamma distrib-
ution [10]:

heY
n(r) = ar?e P, (19)
where
5
a = .m.— , § = a+tl R
T(s) Y

N is the number density of particles, b is related to the mode radius
(maximum concentration size), r., of the distribution:

and @ and y are constants whose values, as well as those of N and b,
depend on the type of cloud or haze studied, For simplicity, we shall
present here some of the results fora=b =y = 1 and various @ and \
values, Typical CPU times were approximately 5 sec per case
studied.

A. Effect of Operating Wavelength

The effect of the initial wavelength A = \; selected for this first
part of the method is illustrated in Fig. 1 which shows a true plot of
particle gize distribution, labeled "n(TRUE)", for comparison with
distribution curves determined with a wavelength of 0. 05 pm, 0.1lum
and 1.0 pm. The ordinate scales on the left and on the right apply
respectively to the solid-line and dashed-line curves, Clearly, the
curves for A = 0.05 um and \ = 0.1 pm are absurd and must be dis-
carded for the present case where the minimum radius is rg = 1 pm.
On the other hand, the curve for A = 1 um is excellent in locating
accurately the position of the mode radius and in reconstructing the
entire distribution except in the region between 1 and 2 pm where a
small negative tail has developed. This tail, which is related to an
improper selection of the smallest opening of the forward light cone
[9r, can be '"regularized" for all practical purposes., The result of
this regularization for the case under study is illustrated by the dotted
curve, We have determined that \] and r are intimately connected
by the relation:
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0.7pum< le, ro - (20)

In other words, we must operate with near IR wavelengths which must
be approximately equal to or smaller than, the expected minimum
radius. Alternatively, the method will not be able to sample particle
sizes smaller than approximately 0.7 pm.

L ! I [ | T [ T 1 T
A = 0.005 um
n A=1.0um
= Vpum %
25 @ <450 min.
84= 2 min.

-40 ©
N
m
=4
=
—30 =
[=
=
[e]
£
20 3.

—10

] 1 | 0

15 17 19 21 23

PARTICLE RADIUS, r{um)

TAILOF A = | um REGULARIZED

A=l um

Fig. 1. Effect of Operating Wavelength

B. Effect of Angular Range

This effect is illustrated in Fig. 2 which shows a set of curves
reconstructed from data obtained within the angular ranges of 100 min,
200 min, 300 min, 450 min, 500 min and 750 min. The curve for
100 min is clearly absurd. The range of 200 min is not much better
although the mode radius is located approximately correctly (its mag-
nitude however is substantially underestimated by approximately 25%),
and the sizes beyond 9 pm are sampled correctly., The range of 300
min is close to being acceptable, and may be for some applications,
particularly if the tail at the smallest sizes is regularized. At a range
of 500 min, the result coincides with the true curve except in the
region where n(r) < 0,5 which is the only region where the curve
labeled "0, 4y = 500 min" departs from the true curve, and even then
only slightly, The results for 6,55 = 450 min would be even better
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than those at 500 min. Further departures from this optimum result
in progressive degradation as shown by the curve at 750 min. Note
that the range is here indicated by a positive maximum angle, 6.
In practice, one would want to scan between +6 ., . and - 8,,,, 1n
order to detect inhomogeneities in the scattering medium.

T T T i T T T 1
8___ = 100 min.
max n (trye), © = 450 min.
8 = in.
mox min - 3um |
A8 = 2 min.
A= lum
= 200 min.
6 e = 00, 450, 500 min. -
Om = 750 min.
T
] { |
n 13 15 7 19 21 23

PARTICLE RADIUS, o um)

Fig. 2, Effect of Angular Range

C. Effect of Angular Resolution

It ig illustrated in Fig. 3 for various values of the angular
resolution: A6 = 10 min, 15 min, 25 min, 30 min, 45 min and 75
min. At all these resolutions, the mode radius is always accurately
located, The curve for 75 min is clearly unsatisfactory, while for
progressively finer resolutions the corresponding curves are con-
stantly improved. This graph illustrates an important point regarding
the uniqueness of the solution. It is seen that as A® becomes smaller,
there is uniform convergence to the true curve, and the solution is
unique and identical to the true one only if the resolution is very
small. Theoretically, A6 should be infinitesimally small, In practice,
however, because of inherent noise in both experimental data and
computations it is only necessary that A8 be approximately less
than 15 min. Little improvement would be achieved by using smaller
AD's,
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Fig. 3., Effect of Angular Resolution

V. DETERMINATION OF COMPLEX REFRACTIVE
INDEX SPECTRUM

The second part of the method will now be described, The
selection of the first wavelength \] according to Eq. (20) has enabled
us to work within the Fraunhoffer approximation to scattering theory
and to retrieve the particle size distribution, independent of the
refractive index, through a closed form analytical solution of the
angular diffraction integral for a scattering polydispersion. On
selecting a second wavelength A\, departing substantially from \j,

(this is clearly required in order that the data obtained separately
with these two wavelengths be independent), the above approximation
can no longer be used, Instead, one is forced to resort to the more
general Mie's theory, This is a rather interesting situation for, then,
the size distribution determined from \j (which is evidently
wavelength-independent) can be substituted in Mie's solution leaving
only m(\ = \2), the complex refractive index at the second wavelength,
as the only remaining unknown. The way in which m(\3) is retrieved
will now be discussed.

Let I; 21 (8j; m,, m;) denote the forwardly scattered intensities
computed from Mie's solution at A\ with the known n(r). The forward
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angle 6, taking the values 6;, is the independent variable. The
dependent variables are my and m;, that is respectively the real and
imaginary parts of the refractive index. The dependence of m, and

m; on A2 is implicit. The measurements obtained by repeating with
the second wavelength Ay the procedure described in the previous
section, according to the prescribed optimal angular range and resolu-
tion, will similarly be denoted I; = I(8;; m,, mj), The purpose would
be to solve the equation

I’fi-li' < e,

. (21)

where ¢j is an upper bound for the accuracy with which we require the
computations I; to approximate the measurements ti; ¢; is fixed in
particular from values of the noise in both the data and the computa-
tions since the evaluation of I; will involve the use of finite word
length arithmetic and quadrature rules of finite accuracy. We then
define the function (independent of )

Ti - L 2
S(m_, m,) = E — . (22)
1 11

where d; is a statistical factor related to the distributions of the
measurements within the observed angular interval, and to their
relative weights. We say that an "inverse solution" of the original
problem, i.e., a set of "'best! values of the unknown parameters,
m, and mj, would have been obtained, if the weighted sum of squares
of relative deviations appearing on the right-hand side of Eq., (22) is
a minimum, say

S(m,, m;) =8 _. (m, m). (23)

The function S can be considered as the equation of a curved surface,
the minimum of which (if it exists) it is required to find, If the
problem is well-conditioned and possesses a unique solution, then,
the surface S will be smooth and will exhibit a unique minimum, The
pair of values of my and my corresponding to this minimum, or in
other words the coordinates of the minimum in the parameter space
of dimensions m, and mj, represents ''the solution'.

We have developed a nonlinear search routine (called Minimiza-
tion Search Method) for accomplishing such minimizations [11, 12].
The algorithm is able to find the minimum of any arbitrary function,
not necessarily S-functions like in Eq. (22). It can handle any
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arbitrary number of unknowns, and is independent of the physical or
mathematical assumptions made in evaluating the quantities I;, Com-
plete details as well as flow charts can be found in our earlier pub-
lished work.,

Sample results for a water (fair weather cumulus) cloud and a
sulphuric acid cloud are illustrated in Table 1. The parameters of the
size distributions for these two cases are respectively: (i) « =6,
vy=1, b=1,5; and (ii) @ = 9.5, y = 1.0, b = 12.5.

Table 1. Illustrating applications of the Minimization
Search Method in retrieving complex refractive
index values of clouds.

Real Part, m, |Imaginary part, m, Maximal
- CPU
True | Computed True Computed Time
H50 cloud 1.290 1.290 0.000304 | 0.00029 48 sec
(XZ = 2,27 pm)
H2S04 cloud 1.440| 1.440 [0.0001 | 0.0001 68 sec
(&, = 0.55 um)

The total CPU times vary with the type of cloud considered and with
the initial guess used for initiating the search algorithm. For the
present cases, their maximal values are indicated in the Table,

The same procedure can of course be applied to a set of second
wavelengths, In this manner the spectrum of the refractive index
could be obtained.

VI, DISCUSSION AND CONCLUSIONS

We have described a two-step approach for retrieving simul-
taneously and separately the size distribution, and the complex refrac-
tive index and its spectrum of atmospheric particulates from angular
measurements of light they scatter in a narrow forward cone, In the
first step, the problem of determining the size distribution only was
considered within the framework of Fraunhoffer diffraction theory.
The same treatment holds however in the Rayleigh-Gans approxima-
tion as well as in all intermediary cases between this approximation -
and anomalous diffraction. In the Fraunhoffer case, we have limited
our study to homogeneous spheres. We are not able to distinguish
this case from that of homogeneous ellipsoids since the corresponding
diffraction patterns differ only by a constant factor [13]. These
particles can however be distinguished from ice needles. The same
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situation exists in the Rayleigh-Gans case. The interest of working in
the forward scattering region is multiple: (i) independence from the
particle refractive index (Babinet's principle), This results in a
particularly interesting situation where size distribution can be deter-
mined without regard to refractive index; (ii) availability of a high
level of scattered energy, half of the total (Huygens' principle), which
can be separated out from the much weaker energy reflected by, and
refracted in, the particles; (iii) independence from polarization which
thus does not affect the diffracted field since the incident polarization
state persists after diffraction. Such particles, in a number j of
species, each species having eventually a different refractive index,
but all species together following a certain size distribution, can be
imbedded in a host gaseous mixture consisting of i different species
of gases. The optical thickness of this medium was assumed to be
sufficiently small in order that single scattering effects only be con-
sidered. For coherent light, Zuev et al {14) have determined that
this thickness can take values up to approximately 25, For incoherent
light, van de Hulst [5] has stated that it should not exceed 0. 1; for
larger values up to 0.3 a correction may be needed for double scatter-
ing while for still larger values of the thickness the complete multiple
scattering must be considered, This statement was taken too literally
in the past. However, detailed computations by Weinman et al [15]
for a mixture of volcanic dust (thickness = 0.5) and gases (thickness

= 0. 145) have shown that near the zenith (p = pg = 0.966), the con-
tribution of multiple scattering to the observed transmitted light is
less than approximately 5% for the scattering angles of interest here
(£8°)! A similar conclusion has been reached by Deepak [16] who
has found that the double ,scattering correction is within 4% up to
angles of 20°, These results support earlier conclusions of Piaskowska-
Fesenkova [17] and de Bary [18] that multiple scattering is negligible
at small scattering angle under reasonably clear sky conditions.
Clearly, single scattering theory has its usefulness for determining
particle gize distribution. It can certainly be retained as the basis
for a particle size spectrometer either in the laboratory or in an
airborne instrument, The use of laser light considerably extends the
domain of applicability of such an instrument. The present approach
is nevertheless being extended to include multiple scattering effects
in order to cover all possible cases.

The effect of the gases can be determined separately if the degree
of polarization of the transmitted light at any single, near-forward
scattering angle is also measured. Otherwise, it must be assumed to
be known.

The proposed method, then, consists in effecting an angular
scan of the near-forward scattering region at a set of wavelengths.
The scan must be performed with a resolution of approximately
15 min, or less, and the forward cone half-width must not exceed
approximately 8 deg. The first wavelength is accurately prescribed
by Eq. (20). Data obtained with this wavelength can then be used to
reconstruct the size distribution for radius values larger than approxi-
mately 0.7 pm from the closed form, analytical solution in Eq. (18).
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This solution, it is emphasized, is not constrained by any analytical
distribution model (as is usually done). No fitting of distribution
parameters is performed. Ample illustrations have been provided
here, and in our earlier work, of the working of this first step of the
method, the uniqueness of the solution, and its stability with regard
to experimental and numerical noise.

The other wavelengths, which must be substantially different
from the one used above for reasons of statistical independence of
information content, are employed in the second step of the method.
Here, Mie's theory is used, and the effects on the corresponding
solution by particle sizes smaller than approximately 0.7 pm are
implicitly considered to be negligible. With the size distribution
previously determined, this solution will only depend on the complex
refractive index. Accurate values of this quantity can be recovered
using the nonlinear search routine we developed earlier. It may be
noted that his routine is independent of the assumption of single
scattering and can be coupled with the multiple scattering solution
with equal success.,

The CPU times quoted for determining both size distribution
and refractive index spectrum are considerably shorter than the
time scales of the physical processes considered. Hence, the
approach can be implemented for real-time operation to monitor the
dynamical evolution of the particulates. The principle of the method
proposed (called Angular Forward Scattering Method) has been
retained for the system design of a particle size spectrometer and
refractometer [12], and is being implemented at the Jet Propulsion
Laboratory, Results of the corresponding experiments will be
reported elsewhere.
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SURFACE INSTABILITY OF STATIONARY AIR BUBBLES*
Carl J, Remenyikr*

ABSTRACT

This study was prompted by observations that pulsations of stationary
bubbles accumilating in the fuel lines of the Saturn missile resulted in
intense structural oscillations.

High speed motion pictures were taken of bubbles oscillating with fixed
mean positions in vertically oscillated containers. It was observed that
the degree of instability of the bubble surface increases with the value of
wa?/v, where w = angular frequency, a = a characteristic linear bubble dimen-
sion, and v = kinematic viscosity.

EXPERIMENTAL APPARATUS

Experiments were performed on a magnetic Vibration Exciter, Model C25H
of the MB Manufacturing Company (Fig. 1). For the first five bubbles de-
scribed below, a transparent, cubical plastic container (Fig. 2) was mounted
on the vibration table. Its edges are 14 in., and the hole at the top is 12
in. deep and 2 in, in diameter. The wall was constructed unusually thick to
eliminate wall vibrations. When thinner walled containers were used, wall
vibrations significantly affected the fluctuating pressure field in the liquid.

The liquid in the container was glycerol, whose high viscosity prevented
large bubbles from disintegrating into clusters of small bubbles. Large bub-
bles were required for study of their surface motions using available equip-
ment.

The photographs shown here are frames of motion pictures taken with a
HYCAM K20S4E high-speed camera. During filming, the container was between the
camera and a flood lamp. The light beam was aligned with the axis of the cam-
era lens, allowing the beam to pass through the container into the lens. A
translucent plastic sheet placed before the flood lamp dispersed its light,
producing an even photographic background.

EXPERIMENTAL PROCEDURES

Before each experiment, the camera was focused on a selected point inside
the liquid to which the bubble was later steered.

* This project was supported in part by the Propulsion and Vehicle Engineer-
ing Laboratory, George C. Marshall Space Flight Center, Huntsville, Ala.,
under Contract NAS 8-20152.

** Department of Engineering Science and Mechanics, The University of Temnes-
see, Knoxville, Tennessee 37916
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After activating the vibration exciter, oscillation frequency was set
as desired. To ensure that the subsequently injected bubble would not rise
to the surface, the amplitude was set sufficiently high to drive any size
bubble to the container bottom. Subsequently, a measured volume of air was
injected with a hypodermic needle, and the amplitude readjusted until the
bubble hovered within camera focus in a stationary mean position.

Wherever the bubbles were released inside the container, they drifted
to the wall. The final position was very near the container wall, but far
enough away to prevent contact. The explanation for the tendency to move
towards the wall probably is that two effects are combined in the process.
The presence of the wall generates a "mirror image" of the bubble, i.e.,
the flow field set up by the wall is nearly the same as if there were a bub-
ble on the opposite side of the plane of the wall, pulsating in phase; Bjerknes
(1909) demonstrated that two submerged objects pulsating in phase exhibit mu-
tual attraction.

DESCRIPTION OF THE BUBBLES AND THEIR SURFACE MOTIONS

Bubbles shown in the illustrations were viewed by the camera from sev-
eral directions. For the following discussions, a frontal view of the bubble
is defined as one in which the region of the container's inside wall nearest
to the bubble is behind the bubble as seen by the camera. In a right side
view, the direction of sight is turned 90 degrees relative to the direction
of the previous view, in such a way that the nearest point of the wall is to
the right in the picture., A view from the opposite direction will be called
a left side view, and the opposite of the frontal view, i.e., a view in which
the bubble clings to the wall region nearest to the camera, will be a rear
view,

The motion picture frames shown in the sequences were selected so that
elapsed time between them is 1/8 of the oscillation period. Thus, the first
and ninth pictures in any sequence show the same motion phase.

On one-half of the inside container surface, horizontal semi-circles were
inscribed at 1/4 in. vertical intervals to serve as reference lines fixed in
the container. Locations of bubbles shown in the figures were on or near an
imaginary line connecting the middle points of these semi-circles. Thus, seg-
ments of reference lines visible in the pictures were in the immediate vicinity
of the bubbles. In most figures, cross hairs provide a reference system fixed
in the camera lens.

These bubbles hovered at fixed mean positions three to four inches above
the container bottom; total depth of the glycerol colum was between 10 and 11
in,

Some bubbles are surrounded by small specks. Most of these are approxi-
mately neutrally buoyant, plastic filings or ion exchange beads which were add-
ed to the glycerol to trace steady streaming (Remenyik 1970). Around those
large bubbles which are distorted by large instabilities, part of the specks
are small bubblets which have been shed by the large bubble.

Observations indicate that instability of the bubble's surface is controlled
by the parameter St = wa?/v, in which w represents the angular frequency, v the
kinematic viscosity, and "a" a characteristic linear dimension associated with
the top of the bubble's surface, A radius of curvature of the bubble top is such
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a linear dimension, but its determination is frequently difficult or even im-
possible. Since it was observed on several oblate bubbles that the bubble's
height had about the same magnitude as the radii of curvature at the top, the
height was used as characteristic length "a" for such bubbles.

The figures are arranged in order of increasing wa?/v, and thus of in-
creasing bubble size.

1. The smallest bubble is shown in Fig., 3. It oscillated with a fre-
quency of 50 cps and maintained a nearly spherical shape throughout the oscil-
lation cycle. Its periodic, asymmetric distortion was undoubtedly caused by
strong shear stresses which resulted from the proximity of the wall. Its di-
ameter was about 0.2 cm., and wR?/v = 0.5, where R is half the diameter. The
bubble is shown in a right side view.

2. The flattened bubble in Fig., 4 had a height of about 0.47 cm., oscil-
lated with a frequency of 54 cps, and wa?/v =~ 10, Its entire surface was
smooth at all times during the oscillation cycle., The bubble is shown in fron-
tal view.

3. Figure 5 shows a bubble of 1.46 cm. approximate height, oscillating
with 51 cps; wa?/v = 50. The intended view was frontal; however, the bubble
drifted unexpectedly to the left, and the view became intermediate between
frontal and left lateral. As a consequence, the curving wall optically dis-
torted the left side of the bubble more than the right side. The mottled back-
ground of the bubble was accidentally caused by the wrong material having been
placed in front of the flood lamp to diffuse its light.*

In a frame-by-frame examination of the film, shot at 6000 frames per
second, the following observations we: 2 made. At about the time when the bub-
ble top is in its highest position, a short, thin, faint white line appears
along the upper edge of the silhouette (+Fig. 5f). This line lengthens rapid-
ly (Fig. 5g and h); when it reaches the edge of the silhouette at the point of
interception a small break appears in the smooth line of the edge. This break
runs downward along the edge of the silhouette as the white line curves down-
ward and continues to lengthen and eventually disappears («+Fig. 5i, a and b).

A second, much wider and brighter streak begins to develop above the
first one when the top assumes its lowest position and the bubble its smallest
size (Fig. 5a and i1). It seems to be a wave interrupting the bubble surface.
It grows in width and depth while the top accelerates upward (Fig. Sb and c),
and diminishes until it disappears when the top accelerates downward (Fig. 5d
and e). One can conjecture that it is an instability feature that grows out
of a periodic initial deformation of the surface caused by the shear field of
the wall. Following its disappearance (between Fig, Se and f), the faint line
reappears after an interval of about 0.09 of the oscillation period, i.e., in
about 0.0018 seconds. Scant available evidence indicates that this interval
decreases and the maximm amplitude of the wave increases with increasing
wa?/v, and when this parameter surpasses a certain value, this feature no long-
er disappears, but periodically varies in magnitude. Plotting locations of
various points on the bubble against time indicates that the surface motion con-
tains a significant second harmonic component,

* In an effort to eliminate these shortcomings, the experiment was fepeated;
however, the new film was subsequently destroyed by yet another accident.
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4. If wa?/v is increased, the wave-like surface distortion eventually
becomes irregular. This is shown in Fig. 6, where the bubble appears in
rear view,

The bubble's oscillation frequency was 53 cps, the average height
was about 1.6 am., and wa?/v = 75,

The protrusion at the bottom is a characteristic feature of this
bubble, appearing and disappearing with each cycle, and developing to vary-
ing sizes, apparently randomly. It was observed, however, that an unusually
large protrusion is always followed during the next cycle by one that is
smaller than average. The protrusion in Fig. 6 is larger than average. Al-
though it is not typical due to its large size, it was chosen for reproduction
here because it exhibits exceptionally well certain details that are observable
on nearly all protrusions. One such typical feature is the shape of the pro-
trusion at the very beginning of its development. Photographs indicate that
it is cylindrical and its tip terminates flat in a plane perpendicular to the
cylinder axis (Fig. 6d).

Large protrusions persist longer than smaller ones and, as a result,
a small remnant of a large protrusion may still be present after the next pro-
trusion had already appeared (Fig. 61 and m; the new protrusion is at right<).
The bubble is surrounded by a cloud of small bubblets which had broken off from
it, and these steadily stream as they oscillate and pulsate. Since the amount
of light scattered by the bubblets varies with size, overall darkness of the
photographs varies accordingly (Fig 6n). This offers a convenient method to
determine the pulsation phase of the bubblets relative to that of the main bub-
ble. This method leads to the conclusion that bubblets oscillate very nearly
in phase with the main bubble, at least in its neighborhood, extending to a
distance of one or two bubble diameters. Also, both main bubble and bubblets
pulsate with a very large second harmonic component which in turn indicates
that the fluctuating pressure field contains a very intense component having
twice the fundamental frequency.

5. The bubble in Fig. 7 is only slightly larger than the previous one,
and motions of both are essentially equal. The view in Fig. 7 is from the
right side, and outlines of the inner wall surface can be seen near the bubble
and to the right. The photographs show the upper portion of the bubble surface.
The surface of this bubble is distorted during each cycle by deep instability
waves. The maximum distortion that developed during the cycle shown appears
in Fig. 7g. This instability feature is possibly the same kind seen in Fig. 5,
but extremely amplified.

On some frames of the film, one can see that a bubblet is being pinch-
ed off by a local instability. In a few other frames, bubblets coalesce with
the large bubble. Apparently, this process establishes a different equilibrium
bubblet concentration for each value of wa?/v. The bubblets drift steadily to
and from the main bubble along looped paths (Remenyik 1970).

The local states of strain in the liquid affect bubblet shape (compare,
e.g., the shapes of bubblet indicated in Fig. 7h and i), and one may observe
that the second harmonic is even more pronounced than before in the pulsations:
of both main bubble and bubblets.

6. When wa?/v was substantially increased, surface instability brought
about the final state (Fig. 8). The bubble disintegrated completely into a
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turbulent cluster of bubblets. The container used was of Plexiglas, had a 6.5
in. inside diameter and a 1/2 in, wall thickness, and is shown in Fig. 1 mount-
ed on the vibration exciter. The liquid was methyl alcohol, 20 in. deep.

The cluster is shown in rear view, and the flood lamp illuminated it
from the side of the camera. It oscillated 126 times per second and it had an
apgroximate mean diameter of 5.6 cm. If R is half the cluster diameter,
wR?/v = 6,42 x 105,

A cloud of bubblets surrounding the cluster extended about a cluster-
diameter beyond the apparent limits visible in Fig. 8. The less-densely popu-
lated region of the cloud did not show up on film because of applied illumina-
tion.

Bubblets forming the cloud were being expelled at the bottom of the
cluster in a steady but violently turbulent stream. They then circulated the
cluster along paths resembling dipole flow, and plunged back into the cluster's
top.

Two intersecting straight lines visible in the photographs were
threads. One was attached to the outside container surface, and the other was
stationary a short distance in front of the first,
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Fig. 2 Cubical container
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Fig. 3 Small, nearly spherical
bubble. wR?/v = 0.5.
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Fig. 4 Flattened bubble with smooth
surface. wa?/v = 10.




Fig. 5 Bubble with slight surface
instability. wa2?/v = 50.
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Fig. 6 Partially disintegrated
bubble with irregular
surface instabilities.
wa?/v = 75,
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Fig. 6 continued
Partially disintegrated bubble with
irregular surface instabilities and
bubblet cloud of periodically vary-
ing darkness. wa?/v = 75.
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Fig. 7 Partially disintegrated
bubble with very large
instabilities. wa?/v is
somewhat larger than 75.




Fig. 8 Cluster of bubblets,
wR?/v =~ 6.42 x 105,
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ON THE GROWTH AND COLLAPSE OF
VAPOR BUBBLES AT LIQUID/LIQUID INTERFACES
William E. Kastenberg
Ivan Catton
Energy and Kinetics Department

School of Engineering and Applied Science
University of California, Los Angeles

I. INTRODUCTION

The study of the thermal interaction initiated by quenching a hot
liquid in a cooler one has recently received a great deal of attention.

The subsequent behavior is important in the metal foundry industry, the
liquid natural gas industry and the nuclear reactor industry. For the
latter, the primary problem is the thermal interaction between molten
fuel (usually uranium oxide) or stainless steel and the coolant (water or
sodium). This thermal interaction is characterized by 1) high pressures
and significant vapor production for the case of molten metal and water,
2) low pressures and efficlencies for the case of molten uranium and
sodium, and 3) significant surface enhancement or fragmentation of the
hot material for both.

The parametric models (computer simulation) of Wright et al. [1] and
Caldarola [2] can be made to match the pressure/time histories for each
case with a suitable adjustment of heat transfer coefficients. However,
these adjustments are made with little physical basis. In addition, Fauske
[3] has proposed a criterion for which a full scale vapor explosion can be
predicted. As mentioned above, surface enhancement or fragmentation occurs
in any case.

At the present time, the phenomena of fragmentation is not well under-

stood. Several theories have been proposed and are reviewed by Caldarola
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and Kastenberg [4]. In that paper, a model, based upon bubble vapor growth
and collapse, was presented to describe the fragmentation process. The
basic hypothesis is that microjets formed during the collapse of vapor film
at the liquid/liquid interface, contain enough kinetic energy to penetrate
and fragment the molten material.

The objective of this paper is to describe a set of experiments which
are being conducted to study the fragmentation process. Results of these
experiments, presented as a set of still photos, duplicated from high-speed
motion picture films are discussed. Some preliminmary conclusions, baséﬁ

upon these experiments are also given.
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11. DESCRIPTION OF EXPERIMENTS

A series of experiments with simulant metals (tin, aluminum and lead)
and water were run. Typically, the metals were heated above their melting
point in a graphite crucible. They were then dropped through an argon
atmosphere into water at various degrees of subcooling. High speed motion
pictures (3,000-5,000 frames per second) were employed to reveal the thermal
interaction.

The general results can be summarized as follows. For water below
70°C (30°C subcooled) a vapor film formed at the 1liquid/liquid interface.
This was followed by apparent collapse and then violent mixing, distortiom,
high pressure and the spewing out of debris. Post mortem inspection showed
that 902 of the molten material had formed a fibrous material. For water
above 70°C, stable film boiling was observed, with little or no interaction.
Post mortem inspection yielded large, smocoth pileces of solid metal in the
form of drops.

To simulate the low conductivity oxide fuels, a series of experiments
with molten salt were conducted. These experiments yielded extremely vio-
lent interactions, indicating that some sort of chemical interaction had
taken place. This is atypical of the UOz/sodium experiments conducted at

Argonne [5].
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III. EXPERIMENTAL RESULTS
In Figure 1, a reproduction of one frame of a high speed motion picture

is shown. In this case, molten tin, at 580°C is being dropped into 80°C
water. The molten tin is completely encapsulated in vapor. This vapor film
is stable, during the descent and when the metal comes to rest on the bottom
container. The sample loses heat by radiation through the film and conduc-
tion through the catcher on the bottom. The post mortem inspection yielded
three pieces of smooth debris of roughly equal mass.

Figure 2 shows a strip taken sequentially from a run with the molten
tin at 580°C and the water at 20°C (80° subcooled). As shown in the larger
photos, an unstable vapor film is formed about the molten sample as it makes
its descent. In frame number two of the second strip (smaller pictures) the
film has partially collapsed. An unstable microjet has appeared. This is
also shown in the foliowing frame. By frame 4 of the second set, there is
rapid production of vapor with a large pressure pulse. The mottled appearance
of the vapor liquid interface indicates that the driving mechanism for the
interaction is of a scale much smaller than the molten metal drop size. When
the frames are viewed in motion, the surface appears to be pushed out by jets
of vapor originating inside the interaction region. This could be postulated
to be the result of collapsing bubbles and the resulting microjet of water
penetrating the molten material and vapor production.

An interesting phenomena is observed in the third column of Figure 2.
The pressure wave created by the rapid expansion is reflected off the con-
tainer wall and interacts with the vapor zone. The effect of the reflected
pressure wave is seen in the several frames following the first frame. The
vapor zone is seen to decrease in size. The remainder of the sequence indi-

cates further vapor production, violent mixing and fragmentation.
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This film strip is typical for metal/water reactions where the water
18 highly subcooled.

The next sequence, depicted in Figures 3 and 4, is for molten salt
(NaCl) and water. Inspecting the strip, it is seen that an interactiom
takes place as soon as the sample hits the surface. A full scale vapor
explosion takes place, with rapid mixing, high pressure, and water being
forced up into the furnace area. Five distinct pressure pulses are observed
when running the movie at reduced speed. These are difficult to visualize
in the movie strip. Because of the violent nature of this run, it was

concluded that some chemical interaction may have taken place.
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IV. CONCLUSIONS

As a result of these experiments the following conclusions can be made.
First, for the case oé molten metals (tin, aluminum and lead) and subcooled
water (below 70°C), collapse of the vapor film triggers the fragmentation
process. Second, above 70°C, the stable vapor film inhibits fragmentation.
Third, that while the vapor collapse triggers the event, the film speed 1is
too slow to observe the action of the microjet on the surface. Fourth and
finally, nothing can be concluded for the low conductivity case (i.e.,
extrapolation of U02) because of the apparent chemical interaction present in
the salt system. This is not expected to occur for a molten UO2 coolant,

sodium or watér interaction.
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Molten tin at 580°C into H, O at 20°C yielding unstable
vapor film with subsequent”fragmentation.
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Fig. 3. Initial stages of molten salt into water yielding
chemical reactions.
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Final stages of molten salt into water with chemical
reaction.
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AN ANALYSIS OF OSCILLATIONS OF A WATER DROPLET
UNDER LOW GRAVITY CONDITIONS

by

0. H. Vaughan and R. E. Smith
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NASA/Marshall Space Flight Center
Huntsville, Alabama 35812

and

R. J. Hung and S. T. Wu
The University of Alabama in Huntsville
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ABSTRACT

Astronaut William R. Pogue conducted some water droplet oscil-
lation demonstrations on the Skylab 4 mission in low earth orbit. In
one of the demonstrations he used a soda straw to cause the droplet,
attached to a flat plate, to oscillate. Marker pen ink was added to
the droplet to enhance photography using an on-board TV camera. The
drop, which was 2.54 cm high and 3.52 cm wide, was observed to have
a natural oscillation frequency of 1.3 Hz. The demonstration was
photographed with an on-board TV camera to record the oscillation
of the droplet and dissipation. We were able to obtain excellent
data on the change in amplitude with time from the observations. An
analysis was performed using these photographic data and a theoretical
model was developed for determining the oscillation frequency, wave-
length, surface tension and damping characteristics of thewater droplet
when attached to a flat plate. The theoretical model and these obser-
vation data are in good agreement.
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I. INTRODUCTION

Experiments performed in an orbiting spacecraft under low gravity
conditions allow observations of phenomena which normally cannot be done
in a terrestrial laboratory. An example of such an observation is that
of the impact of two spheres of water which are not supported by either
an aerodynamic force due to a flowing column of air or held in position
with an encumbering supporting apparatus. Either of these two techniques
tends to dampen the oscillations of the spheres of water and to mask
other types of phenoma. The natural or free oscillations of water drops
and other phonema are of special interest to the cloud physicist and other
fluid mechanics researchers.

Atmospheric microphysfcs deals with droplet and droplet-droplet
interactions. Particularly, the mechanisms which occur during the
creation of rain, such as the rebound of drops, coalescence of drops,
splintering after impacts, oscillation breakup, electrical effects, etc.,
are all of special interest. To study these mechanisms, the Skylab 4
crew was requested to do some fluid mechanics type science demonstrations
during their long duration mission so that natural oscillations and other
phenomena of water droplets could be observed.

This paper presents results of a demonstration conducted by
astronaut William R. Pogue to study water droplet oscillations in low
earth orbit. In this demonstration he perturbed a droplet, attached to
a flat surface, and caused it to oscillate. The droplet had been con-
taminated with marker pen ink to enhance it for photography using an
on-board TV camera. An analysis was performed using this photographic
data and a theoretical model was developed to determine the oscillation
frequency, wavelength, surface tension and damping characteristics of
the water droplet attached to a flat plate. A comparison between
laboratory surface tension and experiment and the value calculated from
this experimental observation was made with good agreement.

II. EXPERIMENTAL ARRANGEMENTS

The hardware used for this demonstration consisted of on-board
medical type syringes, pieces of tape attached to drinking straws, a pad
of ruled paper, marker pen writing ink, the teflon coated flat surface
of the ED 52 "Web formation in zero gravity" spider cage, and the on-
board TV camera. The water used in this demonstration was colored, to
enhance the photography, by adding a small amount of the marker pen ink.
During the demonstration a water droplet, attached to a flat surface,
was caused to oscillate by motion of a soda straw. By observing the
change in amplitude with time we were able to obtain the data required
to verify the applicability of a proposed theoretical model.

In the present investigation, the film, taken with the on-board
TV camera, was studied and measurements of the characteristics of the
drop oscillations were made using a Vanguard film analyzer. The amplitude
and wavelength of the oscillations were determined directly from the film
using appropriate scale factors. The frequency of oscillations was
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determined by counting the number of frames that were observed during
the time interval between the time that the water drop underwent
deformation and returned to its original shape and then dividing this
count number by the TV camera framing rate (30 frames/sec).

Some selected frames of the various modes of the oscillating
water droplet attached to the flat surface are presented in Figure 1.
The numbers on the pictures in the figure show the sequence of TV
camera frames taken in the Skylab demonstration. Picture number 1
is at the moment when a drinking straw was inserted into the center
of the water drop attached to the flat surface. Picture numbers
4, 6, 9 and 12 show the soda straw being pulled out of the water drop,
and picture number 13 shows the moment when the soda straw left the
surface of the water drop. Picture number 14 shows the oscillation
of the water drop at its maximum amplitude right after the soda straw
completely left the surface of the drop while picture number 28 shows
the drop at its minfmum amplitude. Picture numbers 30, 33, 34, 35,
36, 37 and 38 show how the water drop increased its amplitude again .
and picture number 40 shows the moment when the water drop just completed
one cycle of oscillation and returned to its maximum amplitude.

Analysis of these pictures frame by frame give us an opportunity
to measure the frequency and wavelength of the oscillations and how
these oscillations decay with time.

III, THEORETICAL MODEL

A theoretical calculation for the oscillation of free floating
11quid droplet was given by Lord Rayleigh (1879) almost a hundred
years ago. Recently, Nelson and Gokhale (1972) reported an experi-
mental study of small amplitude natural droplet oscillations with drop-
let sizes from a few hundred micrometers to millimeters in a vertical
wind tunnel study, and concluded that the agreement between experi-
mental results and theoretical calculation given by Rayleigh was good.
The present study concerns oscillations of a water droplet attached
to a flat plate rather than oscillations of a free floating droplet, and
the size of the droplet is several cm rather than a hundred ym. It
is interesting to study the present experiment to see how well the
data agrees with theoretical models.

The theoretical model is based on the concept that fluid
surfaces tend to be in equilibrium when the surface tension forces are
balanced by the fluid pressure. If we assume that the amplitude of the
oscillations is small compared to the wavelength, then the boundary
conditions on the velocity potential y for the rectangular coordinates
can be written (Landau and Lifshitz, 1959)

2 2 2
pu-aiu Mso atz=0 (3.])
at2 92 \ ax2 ay?
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where p is the density of the fluid and o is the surface tension coef-
ficient. If we consider a plane wave propagated along the x-axis, then
the solution of the system can be assumed to be in the form

v =Re [Ae-kz oilut - kx)] (3.2)

where A is the amplitude, k is the wave number, and w is the circular
frequency of the wave. The relation between k and w which is called the
dispersion relation can be obtained by substituting Equation (3.2) into
the boundary condition (3.1)

w? = 2K (3.3)

Since w = 2nf where f is the oscillation wave frequency in Hz, we have

3
I 3.4
s (3.4)

It is important to point out that a plane wave solution as we
have shown in equation (3.2) may not be true when the radius of curvature
of the oscillating fluid is on the order of the wavelength of the
oscillations. In this case, spherical harmonics rather than a plane
wave solution is more suitable for describing the oscillation of the
droplet. For the case of a spherical droplet oscillation of an incom-
pressible fluid under the action of surface tension force,the boundary
condition shown in equation (3.1) in rectangular coordinates can be
written into spherical coordinated as follows:

32 a 3 ] 1 ) 3
oot R {Z'a%*S'F [sme 2 (smo3t)

(3.5)

2
PR El%g]} =0 at r =R
Sin%e 3¢

If we prostulate a solution in the form of a spherical wave which
satisfies the spherical harmonic function of the form:

v = Re [Ae it 2y (6,0)] (3.6)

with2=0,1, 2, « « «, and m, 1, +2, +3, ¢ ¢ » +2 and using the
spherical harmonic function
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Yo (85 6) = P (Cos 6) ™ (3.7)

where ﬁ? (cos @) is an associated Legendre function. Then knowing that
the spherical harmonics Y _ satisfies

M

ayY 3%y
1 9 &m 1 2m
=— == {Sin @ )+ ( >+2(z+1)¥ =0 (3.8)
Sin 36 < 06 Sin? o a¢z m

we now have the relation
mz - o £ (2‘]) (9:"'2) (3.9)
p R®

Substituting the relations w=2nf, and R = d/2, where d is the diameter
of the spherical droplet, equation (3.9) becomes

."2 p d!
which agrees with the formula obtained by Rayleigh (1879).

It is clear that the fundamental mode of the spherical harmonic
oscillations is 2£=2. In the present study, the wave mode of oscillation
observed for the water droplet attached to the flat surface is a single
mode which is equivalent to £=2 for the spherical harmoni¢ case. By
making a comparison between equations (3.4§ and (3.10) and substituting
k = 2n/x and A =7d/2 in equation (3.4), we find that the plane wave
solution and the spherical harmonic solution are equivalent for £=2,
For the case of multi-modes osciilations derivations between the plane
wave solution and spherical harmonic solution becomes apparent. Table I
shows the percentage deviation between these two solutions. The
maximum deviation shown is 11% when =4 with the deviation gradually
decreasing as £ increases.

In the present study, the contact angle between the water droplet
and the flat surface is close to m/2, and there is no indication shown
in the film obtained from Skylab that the contact line between the
fluid and solid surface moved as the water droplet oscillated. This is
the fundamental assumption we have made for boundary conditions in which
we assume that the velocity potential vanishes on the contact 1ine. If
the contact line moves, a special justification is necessary (West,
1911; Huh and Scriven, 1971).

Physically, the surface tension a is a measure of the work done
per unit area to balance the pressure difference between the two sides
of the fluid. This implies that a increases when the pressure
difference increases, and o decreases when the fluid is contaminated
with impurities.
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Furthermore, let us now calculate the energy dissipation of droplet
oscillations. In this case the mechanical energy, Emech’ includes both

the kinetic and the potential energy. Thus, the energy dissipated per
unit time in the droplet is

av1

Erech ™ -Ic;j -3—)ng (3.11)

where o;J is the viscous stress tensor which is defined

av v av v
P g_ 2
% "( J+T1x1 3% ax) 45 %, (3.12)

and v is the velocity and V is the volume of the fluid. Here n and z
are called coefficients of first and second viscosity, respectively.
Under the condition of an incompressible fluid (water droplet), equation
(3.11) becomes

. 1 vy dv Y
Emech 8 - — I(?_j- x1> dqv (3-13)

If we assume that during the oscillation of the 1iquid droplet the volume
of the surface region of the rotational flow is small and that the
velocity gradient is not large, then the existence of the region of
rotational flow may be ignored. If the integration is taken over the
whole volume of the fluid which moves as if it were an ideal fluid, then
we have potential flow,

v 2 v,
3?3 axiax‘j Xy (3.14)
so that
2
Eoch -m'[(ﬁ%) av. (3.15)

In the present analysis we are not interested in the instantaneous value
of energy dissipation, but the mean value of energy dissipation with
respect to time. By using the definition of mean value with respect to
time for periodic motion on

<y> =-2°1’T_ Xm v(wt) dt (3.16)

(o]
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and the wave form shown in equation (3.2), we have the mean value of
mechanical energy

<Emech> = -8n k* J<w2> dv . (3.17)

Now, the mean value of mechanical energy is

p[<v§> dv

pf<(%£;)‘> av

<Emech>

whence

2pk’f<xp’> dav. (3.18)

<Emech>

It is known that the energy of the wave decreases according to the low

<E >« e 2t (3.19)

mech

since the energy is proportional to the square of the amplitude where the
amplitude decreases with time as

A=A e 't (3.20)

Here Ao is the initial value of the amplitude and Y is the damping rate

?f %hg wave. Thus, the damping rate obtained from equations (3.17) and
3.18) is

= |<émech>,

"
2<Emech>

(3.21)

2nk?
)

IV. RESULTS AND DISCUSSIONS

We were able to obtain measurements of the natural frequency of
the oscillations of the droplet attached to a flat surface, and the size
of the droplet from the film. As we have stated earlier, the phenomena
of fluid-solid contact 1ine is always a problem when contact 1ine moves
(Huh and Scriven, 1971). This is because the movement of fluid-solid
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contact 1ine violates the basic boundary conditions. Fortunately, after
careful examination of Skylab films, we found that there is no indication
that the contact 1ine between the fluid and solid surface moved when the
water droplet oscillated in the present case. The natural frequency of
the oscillations as measured was 1.3 Hz for the contaminated water droplet
(2.54 cm in height and 3.52 cm in width) attached to a flat surface. By
using the observed natural frequency and wavelength, A (= 2n/k) = 6.1 cm,
determined from the Skylab demonstration film, the surface tension of the
droplet oscillation can be obtained from the following relation based on
equation (3.4) or equation (3.10) with £=2

.2
¢ v (4.1)

= 61 dynes/cm.

This value is for the surface tension for water contaminated with marker
pen ink while the surface tension for pure water at 20° C is 72 dynes/
cm.

A laboratory measurement of the surface tension of a repro-
duction of the Skylab water which is contaminated with marker pen ink
was made at the NASA/Marshall Space Flight Center and gave a value of
a T 60 dynes/cm which is in good agreement with.Skylab demonstration
value.

Calculation of the dissipation rate of the droplet oscillation
is rather straightforward by substituting the observed wave number in
equation (3.21). It is

vy = 2.05 x 10”2 rad/sec

= 3.26 x 107% Hz
when the viscosity coefficient of pure water at 20° C is used

(n= 0.01 cm®/sec). This damping rate of the droplet oscillation
corresponds to a dissipation time of 306 seconds.

(4.2)

Using the initial amplitude of the droplet oscillations as
measured on the film and equation (3.20), we attempted to compare the
actual damping rate curve with a theoretical curve, and our results
are shown in the Figure 2. Although we were only able to observe
the oscillations of the droplet for 22 seconds, there is good agree-
ment between the actual dissipation rate and the theoretical curve.

In the present analysis, the theoretical model is based on the
assumption that the wave amplitude is small compared with the wave-
length. The maximum amplitude of the droplet oscillation is 7% of the
wavelength which substantiates the validity of the assumptions used in
the development of the theoretical model.



625

ACKNOWLEDGEMENT
RJH and STW wish to acknowledge the support of NASA/Marshall
Space Flight Center through Contract No. NAS8-30247.
REFERENCES
Huh, C. and L. E. Scriven, J. Coll. and Interf. Sci. 35, 85, 1971.

Landau, L. D. and E. M. Lifshitz, Fluid Mechanics, Pergamon Press,
London, 1959.

Nelson, A. R., and N. R. Gokhale, J. Geophys. Res. 77, 2724, 1972.
Rayleigh, L., Proc. Roy. Soc. London 29, 71, 1879, or The Theory of

?ound, by Lord RayTeigh (J. W. Strutt), Vol. 2, Dover, New York,
945,

West, G. D.,Proc. Roy. Soc.,Ser. A 86, 28, 1911.




626

TABLE 1

COMPARISON OF THE PLANE WAVE SOLUTION AND
SPHERICAL HARMONIC SOLUTION

Mode (%) Deviation*
2 0.0
4 0.1
6 0.10
8 | 0.085
10 0.080
12 0.065
15 0.055
20 0.043
30 0.030
50 0.018
80 0.012

100 0.009

fz]p1ane wave fzJspherica'l harmonic
*Deviation =

2
f ]p1ane wave
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Fig. 1. Skylab 4 Science Demonstrations of Selected Sequences of the Oscillating
Water Droplet Attached to the Flat Surfaces in a Low Gravity Environment.
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ABSTRACT

Several science demonstrations were performed on the Skylab IV mission
on the behavior of typically ~ 100 ml drops of a water and water/soap solution.
Symmetric and antisymmetric oscillations were observed. Also, other phe-
nomena were observed, including drop collisions, rotational instability and
dampening of oscillations. A total in excess of two hours of data was obtained.
The film shown was a seventeen minute composite of selected sequences.

DISCUSSION

A 17-minute film was shown which consisted of selected sequences from
Skylab IV science demonstrations TV-101, Liquid Floating Zone, and TV-107,
Fluid Mechanics Series. Over two hours of TV video tape were obtained on
these demonstrations by the Skylab IV crew of Ed Gibson, Bill Pogue and Gerald
Carr. The film contained the following five segments:

e Oscillation and damping of a free-floating, 100 cc spherical
drop of marker ink-doped water which was initially per-
turbed into an ellipsoid.

e Same as preceding with a soap-water solution.

Impact and coalescence of two Tang-water globules each
30cc in size.

Rotation and breakup of a 100 cc water drop.
e Rotational and longitudinal stability of Tang-water and
soapy water cylindrical floating zones.
Each of these sequences exhibit liquid dynamics in an environment of l()'4
8Earth’ 5 psi, 70°F, and 70% N2-3O% OZ' The film had sound and contained
comments from the astrounauts as they performed the experiments in Skylab.

. :
Film presented at International Colloquium on Drops and Bubbles, California
Institute of Technology, Pasadena, California, 29 August 1974.
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Demonstration TV-101, Liquid Floating Zone, was proposed by Dr.
John Carruthers of Bell Research Laboratories, Murray Hill, New Jersey.
It was performed and recorded on TV video by Science Pilot Ed Gibson.
This demonstration simulates an important method of growing crystals and
was done to define the stability of the liquid zone under a steady rotation rate
of about 30 rpm as well as to obtain data on the instability modes and convec-
tion patterns. This information is important in the utilization of this tech-
nique for growing crystals both on the ground and in space in the planned
Space Laboratory. Specifically, the demonstration consisted of rotating water
zones of varying lengths. The effect of viscosity on the zone was studied by
using foams of water, soap solution and air for the zone. In addition the long-
itudinal vibration characteristics of the floating zones were also investigated.
Measurements from the flight film are being made for thirty-nine different
rotation sequences of which twenty-four were stable and fifteen were unstable
and broke. The measurements include the rotation rate versus time and the
zone deformation versus time for each sequence. Data are also being taken
from the film of several longitudinal vibration sequences. The preferred
stable mode which was exhibited in the film sequence by the rotating zone was
a nonsymmetric ""C" shape, whereas previous Plateau experiments and theo-
retical analyses lead to axisymmetric shapes (Ref. 1). Rayleigh's criteria
for the maximum stable zone length (Ref. 1) seems to be valid for the zones
shown in the film sequence.

Demonstration TV-107, Fluid Mechanics Series, consisted of several
fluid demonstrations grouped under one heading. The investigators were
Ms. Barbara Facemire and Mr. O. Vaughan of MSFC; Dr. Sid Bourgeois of
Lockheed Missiles and Space Company, Huntsville, Alabama; and Dr. T. Frost
of the General Electric Company, Valley Forge, Pennsylvania. Both Science
Pilot Ed Gibson and Pilot Pogue recorded this demonstration on TV video.
It was essentially a series of tests to obtain data on fluid oscillation times,
dampening times, rotational instability, wetting characteristics, internal
vortices and fluid flow patterns in liquid drops under microgravity. Over
two hours of excellent data were obtained.

Quantitative measurements are in the process of being made from the
film of these Skylab IV fluid mechanic science demonstrations. These include
the frequency and damping of oscillations of different size liquid droplets, the
approach velocity and frequency of oscillation for the droplet coalescence
demonstrations and the deformation of drops during the rotation and breakup
demonstration. Other demonstrations are not amenable to quantitative meas-
urements and are being analyzed qualitatively.

The drop oscillation sequences shown in the film indicate that Lord
Rayleigh's classical analysis (Ref. 1) of the problem accurately predicts the
effect of surface tension on the vibration frequency of free-floating water
drops. The damping factor for these oscillations on Skylab IV, however, do
not seem to agree with Lamb's analysis (Ref.2) of the viscous damping of
free-floating, spherical drops undergoing ellipsoidal oscillations. This is
probably due to the rather large exictations to which the drops were exposed.
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The impact demonstrations indicate that a minimum velocity is neces~
sary to overcome surface forces and affect a coalescence. There is also an
indication that electrostatic effects may occur in some coalescences. Since
quantitative data can not be obtained in many of the impact demonstrations,
especially when impacts occur without coalescence, criteria for the coal-
escence of liquids in low-g will be difficult to determine.

The slow mixing of the liquids after impact and the dogbone shape of a
droplet upon rotation demonstrate a small amount of internal circulation of
a freely floating fluid in a low-gravity environment. This is an important
obsgervation which had not been predicted and could prove very significant for
space processing applications.

The injection of air into liquid globules demonstrates the effect of com-
pressible air in damping oscillations. This technique also demonstrates the
feasibility of forming hollow thin-walled liquid spheres. Several syringes of
air were injected into a water globule forming a single sphere of air inside
the liquid globule.

The difficulty of handling freely floating liquids and the complexity of
the fluid motion becomes clear while viewing these demonstrations and
listening to the comments of the astronauts. In the post-flight debriefing
the astronauts mentioned that a lot of time was necessary for learning how
to handle fluids and recommended that non-wetting surfaces be used to
handle fluids since on a wetting surface the fluid spreads, preventing the re-
lease of free floating globules. They also noted that air currents had a sig-
nificant effect on free-floating globules, making it difficult to position them.
However, even with these difficulties the astronauts, after an initial learning
period, became proficient at maneuvering the liquids and performing demon-
strations.

These demonstrations were used to fill extra time during the Skylab
flights and were limited to on-board hardware. Data from the fluid mechanic
demonstrations consisted only of the astronaut's voice transmission and tele-
vision transmission. Even with these constraints, a great deal of basic and
practical information was obtained on fluid motion and handling in low-g envi~
ronments. This type of information will be beneficial to the design and develop-
ment of many future space processing, cloud physics, and other related fluids
handling programs.
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